Skip to main content
Log in

Thin cellulose films as a model system for paper fibre bonds

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Thin cellulose films on silicon substrates are used as a model system for paper fiber bonds. The films are formed by spincoating trimethylsilylcellulose on the substrates. The films are regenerated using HCl gas. After swelling in water, two samples can be bonded like a sandwich. It is shown that this model system can be used to measure the bond strength between the two films under controlled conditions. For a detailed characterization the films are studied in terms of roughness with atomic force microscopy (AFM). The hardness of the films is investigated by AFM-based nanoindentation. The chemistry and the thickness of the films is studied by infrared spectroscopy. It is shown that this model system enables the evaluation of different bonding mechanisms discussed in pulp and paper research. Our results clearly indicate that Coulomb interaction is an important bonding mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56(9):930–933

    Article  Google Scholar 

  • Cranston E, Gray D, Rutland M (2010) Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose. Langmuir 26:17190–17197

    Article  CAS  Google Scholar 

  • Djak M (2011) Investigation of cellulose-hemicellulose films on Si/SiO2 substrates by means of polarization modulation fourier transform infrared spectroscopy. Master thesis, Graz University of Technology

  • Djak M, Gilli E, Kontturi E, Schennach R (2011) Thickness dependence of reflectionabsorption infrared spectra of supported thin polymer films. Macromolecules 44(7):1775–1778

    Article  CAS  Google Scholar 

  • Fischer W, Hirn U, Bauer W, Schennach R (2012) Testing of individual fiber–fiber joints under biaxial load and simultaneous analysis of deformation. Nord Pulp Pap Res J 27(2):237–244

    Article  CAS  Google Scholar 

  • Ganser C, Hirn U, Rohm S, Schennach R, Teichert C (2013) AFM nanoindentation of pulp fibers and thin cellulose films at varying relative humidity. Holzforschung. doi:10.1515/hf-2013-0014

  • Gindl W, Gupta HS (2002) Cell-wall hardness and young’s modulus of melamine-modified spruce wood by nano-indentation. Compos Part A Appl Sci 33(8):1141–1145

    Article  Google Scholar 

  • Grignon J, Scallan AM (1980) Effect of pH and neutral salts upon the swelling of cellulose gels. J Appl Polym Sci 25(12):2829–2843

    Article  CAS  Google Scholar 

  • Gustafsson E, Johansson E, Wågberg L, Pettersson T (2012) Direct adhesive measurements between wood biopolymer model surfaces. Biomacromolecules 13:3046–3053

    Article  CAS  Google Scholar 

  • Hartung J (2003a) Statistik. Oldenbourg Verlag, Munich, Germany, p 345

  • Hartung J (2003b) Statistik. Oldenbourg Verlag, Munich, Germany, p 190

  • Hartung J (2003c) Statistik. Oldenbourg Verlag, Munich, Germany, pp 178–182

  • Hinterstoisser B, Salmen L (1999) Two-dimensional step-scan FTIR: a tool to unravel the OH-valency-range of the spectrum of cellulose I. Cellulose 6(3):251–263

    Google Scholar 

  • Hirn U, Schennach R, Ganser C, Magnusson M, Teichert C, Östlund S (2013) The area of molecular contact in fiber–fiber bonds. In: Proceedings of the 15th fundamental research symposium, Cambridge, pp 201–226

  • Holmberg M, Berg J, Stemme S, Ödberg L, Rasmusson J, Claesson P (1997) Surface force studies of langmuirblodgett cellulose films. J Colloid Interf Sci 186:369–381

    Article  CAS  Google Scholar 

  • Kontturi E, Thüne PC, Niemantsverdriet JW (2003) Novel method for preparing cellulose model surfaces by spin coating. Polymer 44(13):3621–3625

    Article  CAS  Google Scholar 

  • Kontturi E, Tammelin T, Österberg M (2006) Cellulose-model films and the fundamental approach. Chem Soc Rev 35(12):1287–1304

    Article  CAS  Google Scholar 

  • Kontturi E, Suchy M, Penttilä P, Jean B, Pirkkalainen K, Torkkeli M, Serimaa R (2011) Amorphous characteristics of an ultrathin cellulose film. Biomacromolecules 12:770–777

    Article  CAS  Google Scholar 

  • Lindström T, Wågberg L, Larsson T (2005) On the nature of joint strength in papera review of dry and wet strength resins used in paper manufacturing. In 13th fundamental research symposium, pp 457–562

  • McKenzie A (1984) The structure and properties of paper, part xxi. the diffusion theory of adhesion applied to inter-fibre bonding. Appita J 37:580–583

    CAS  Google Scholar 

  • Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10:181–188

    Article  Google Scholar 

  • Oliver WC, Pharr GM (1992) Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583

    Article  CAS  Google Scholar 

  • Österberg M (2000) The effect of a cationic polyelectrolyte on the forces between two cellulose surfaces and between one cellulose and one mineral surface. J Colloid Interf Sci 229:620–627

    Article  Google Scholar 

  • Page DH (1969) A theory for the tensile strength of paper. Tappi J 52(4):674–681

    CAS  Google Scholar 

  • Persson BNJ, Ganser C, Schmied F, Teichert C, Schennach R, Gilli E, Hirn U (2013) Adhesion of cellulose fibers in paper. J Phys Condens Matter 25(4):045002. doi:10.1088/0953-8984/25/4/045002

    Article  Google Scholar 

  • Rennel J (1969) Opacity in relation to strength properties of pulps. Part IV the effect of beating and wet pressing. Pulp Pap Canada 70:T151–T158

    Google Scholar 

  • Rohm S (2013) Thin cellulose film as model system for paper fibres. Master thesis, Graz University of Technology

  • Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967–3969

    Article  CAS  Google Scholar 

  • Salmi J, Österberg M, Stenius P, Laine J (2007) Surface forces between cellulose surfaces in cationic polyelectrolyte solutions: the effect of polymer molecular weight and charge density. Nord Pulp Pap Res J 22:249–257

    Article  CAS  Google Scholar 

  • Scallan AM, Grignon J (1979) The effect of cations on pulp and paper properties. Svensk Papperstidning 82(2):40–47

    CAS  Google Scholar 

  • Schmied FJ, Teichert C, Kappel L, Hirn U, Schennach R (2012) Joint strength measurements of individual fiber–fiber bonds: an atomic force microscopy based method. Rev Sci Instrum 83(7):073902. doi:10.1063/1.4731010

    Google Scholar 

  • Schmied F, Teichert C, Kappel L, Hirn U, Bauer W, Schennach R (2013) What holds paper together: nanometre scale exploration of bonding between paper fibres. Sci rep 3:2432. doi:10.1038/srep02432

  • Schniewind AP, Nemeth LJ, Brink DL (1964) Fiber and pulp properties—I. Shear strength of single fiber crossings. Tappi J 47:244–248

    CAS  Google Scholar 

  • Tang B, Ngan AHW (2003) Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials. J Mater Res 18(05):1141–1148

    Article  CAS  Google Scholar 

  • Teichert C (2002) Self-organization of nanostructures in semiconductor heteroepitaxy. Phys Rev 365(5–6):335–432

    CAS  Google Scholar 

  • Torgnysdotter A, Wågberg L (2003) Study of the joint strength between regenerated cellulose fibres and its influence on the sheet strength. Nord Pulp Pap Res J 18(4):455–459

    Article  CAS  Google Scholar 

  • Torgnysdotter A, Kulachenko A, Gradin P, Wågberg L (2007) The link between the fiber contact zone and the physical properties of paper. J Compos Mat 41:1619–1633

    Article  CAS  Google Scholar 

  • Weber F, Koller G, Schennach R, Bernt I, Eckhart R (2013) The surface charge of regenerated cellulose fibres. Cellulose. doi:10.1007/s10570-013-0047-8

  • Zhao Y, Wang GC, Lu TM (2001) Characterization of amorphous and crystalline rough surface: principles and applications. Academic Press, San Diego

    Google Scholar 

Download references

Acknowledgments

The financial support of the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Schennach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rohm, S., Hirn, U., Ganser, C. et al. Thin cellulose films as a model system for paper fibre bonds. Cellulose 21, 237–249 (2014). https://doi.org/10.1007/s10570-013-0098-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0098-x

Keywords

Profiles

  1. Christian Ganser