Skip to main content

Advertisement

Log in

Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The thermal degradation behavior of six different vegetal fibers was studied using thermogravimetry under nitrogen atmosphere at four different heating rates (5, 10, 20 and 40 °C min−1). The degradation models Kissinger, Friedman and Flynn–Wall–Ozawa methods were used to determine the apparent activation energy and the frequency factor of these fibers. Furthermore, the solid state degradation mechanisms were determined using Criado’s method. Additionally, X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy were analyzed to corroborate the obtained results. The results indicated that the apparent calculated activation energies can be more closely related to the exponential dependence of the rate of heterogeneous reactions than to the, necessary “energy”, which is commonly used. The Criado’s master curves indicated two different degradation mechanisms for the fibers: diffusion followed by random nucleation. The results also indicated that the crystallinity index as calculated by X-ray diffraction and determinated by FTIR does not necessarily represent higher thermal stability as noted by the thermogravimetric analysis curves. The thermal behavior and the degradation mechanism did not show to be influenced by the lignocellulosic components of the fibers, exception for buriti and sisal. This behavior was attributed to higher extractive content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul Khalil HPS, Bhat AH, IreanaYusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Article  CAS  Google Scholar 

  • Almeida JHS Jr, Ornaghi HL Jr, Amico SC, Amado FDRA (2012) Study of hybrid intralaminate curaua/glass composites. Mater Design 42:111–117

    Article  CAS  Google Scholar 

  • Alves C, Ferrão PMC, Silva AJ, Reis LG, Freitas M, Rodrigues LB, Alves DE (2010) Ecodesign of automotive components making use of natural jute fiber composites. J Clean Prod 18:313–327

    Article  CAS  Google Scholar 

  • Badía JD, Santonja-Blasco L, Moriana R, Ribes-Greus A (2010) Thermal analysis applied to the characterization of degradation in soil of polyactide: II. On the thermal stability and thermal decomposition kinetics. Polym Degrad Stab 95:2192–2199

    Article  Google Scholar 

  • Beg MDH, Pickering KL (2008) Accelerated weathering of unbleached and bleached Kraft wood fibre reinforced polypropilene composites. Polym Degrad Stabil 93:1939–1946

    Google Scholar 

  • Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274

    Article  CAS  Google Scholar 

  • Borsoi C, Scienza LC, Zattera AJ (2012) Characterization of composites based on recycled expanded polystyrene reinforced with curaua fibers. J Appl Polym Sci 128:653–659

    Article  Google Scholar 

  • Carrillo F, Colom X, Suñol JJ, Saurina J (2004) Structural FTIR analysis and thermal characterization of lyocell and viscose-type fibres. Eur Polym J 40:2229–2234

    Article  CAS  Google Scholar 

  • Chiang C, Chang R, Chiu Y (2007) Thermal stability and degradation kinetics of novel organic/inorganic epoxy hybrid containing nitrogen/silicon/phosphorus by sol–gel method. Thermochim Acta 453:97–104

    Article  CAS  Google Scholar 

  • Chin CW, Yousif BF (2009) Potential of kenaf fibres as reinforcement for tribological applications. Wear 267:1550–1557

    Article  CAS  Google Scholar 

  • Cordeiro NC, Gouveia AGO, Moraes AM, Amico SC (2011) Natural fibers characterization by inverse gas chromatography. Carbohydr Polym 84:110–117

    Article  CAS  Google Scholar 

  • Criado JM, Málek J, Ortega A (1989) Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta 147:377–385

    Article  CAS  Google Scholar 

  • Doyle CD (1961) Estimating thermal stability of experimental polymers by empirical thermogravimetric analysis. Anal Chem 33:77–79

    Article  CAS  Google Scholar 

  • Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  CAS  Google Scholar 

  • French AD (2013) Idealized power diffraction patterns for cellulose polymorphs. Cellulose doi. doi:10.1007/s10570-013-0030-4

    Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Galwey AK (2003) Eradicating erroneous Arrhenius arithmetic. Thermochim Acta 399:1–29

    Article  CAS  Google Scholar 

  • Hult E, Iversen T, Sugiyama J (2003) Characterization of the supramolecular structure of cellulose in wood pulp fibres. Cellulose 10:103–110

    Article  CAS  Google Scholar 

  • Jawaid M, Abdul Khalil HPS, Alattas OS (2012) Woven hybrid biocomposites: dynamic mechanical and thermal properties. Compos Part A-Appl S 43:288–293

    Article  CAS  Google Scholar 

  • Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498:61–66

    Article  CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364

    Google Scholar 

  • Kim UJ, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781

    Article  CAS  Google Scholar 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B-Eng 42:856–873

    Article  Google Scholar 

  • Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  • Methacanon P, Weerawatsophon U, Sumransin N, Prahsarn C, Bergado DT (2010) Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydr Polym 82:1090–1096

    Google Scholar 

  • Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234

    Article  CAS  Google Scholar 

  • Órfão JJM, Antunes FJA, Figueiredo JL (1999) Pyrolisis kinetics of lignocellulosic materials—three independent reactions model. Fuel 78:349–358

    Article  Google Scholar 

  • Ornaghi HL Jr, Bolner AS, Fiorio R, Zattera AJ, Amico SC (2010) Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J Appl Polym Sci 118:887–896

    CAS  Google Scholar 

  • Ornaghi HL Jr, da Silva HSP, Zattera AJ, Amico SC (2011) Hybridization effect on the mechanical and dynamic mechanical properties of curaua composites. Mater Sci Eng, A 528:7285–7289

    Article  CAS  Google Scholar 

  • Poletto M, Pistor V, Zeni M, Zattera AJ (2011) Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polym Degrad Stab 96:679–685

    Article  CAS  Google Scholar 

  • Poletto M, Zeni M, Forte MMC, Zattera AJ (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153

    Article  CAS  Google Scholar 

  • Reddy KO, Maheswari CU, Reddy DJP, Rajulu AV (2009) Thermal properties of Napier grass fibers. Mater Lett 63:2390–2392

    Article  CAS  Google Scholar 

  • Romanzini D, Ornaghi HL Jr, Amico SC, Zattera AJ (2012) Preparation and characterization of ramie-glass fiber reinforced polymer matrix hybrid composites. Mater Res 15:415–420

    Article  CAS  Google Scholar 

  • Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2009) Combined kinetic analysis of thermal degradation of polymeric materials under any thermal pathway. Polym Degrad Stabil 94:3079–3085

    Google Scholar 

  • Santos RS, Souza AA, De Paoli MA, Souza CML (2010) Cardanol–formaldehyde thermoset composites reinforced with buriti fibers: preparation and characterization. Compos Part A-Appl S 41:1123–1129

    Article  Google Scholar 

  • Satyanarayana KG, Guimarães JL, Wypych F (2007) Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications. Compos Part A-Appl S 38:1694–1709

    Article  Google Scholar 

  • Sgriccia N, Hawley MC, Misra M (2008) Characterization of natural fiber surfaces and natural fiber composites. Compos Part A-Appl S 39:1632–1637

    Article  Google Scholar 

  • Teng H, Wei YC (1998) Thermogravimetric studies on the kinetics of rice hull pyrolysis and the influence of water treatment. Ind Eng Chem Res 37:3806–3811

    Article  CAS  Google Scholar 

  • Tiptipakorn S, Damrongsakkul S, Ando S, Hemvichian K, Rimdusit S (2007) Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends. Polym Degrad Stab 92:1265–1278

    Article  CAS  Google Scholar 

  • Wu Q, Yao F, Xu X, Mei C, Zhou D (2013) Thermal degradation of rice straw fibres: global kinetic modeling with isothermal thermogravimetric analysis. J Ind Eng Chem 19:670–676

    Google Scholar 

  • Xanthos M, Clemons CM (2010) Functional fillers for plastics, 2nd edn. Germany, Weinheim, pp 195–206

    Book  Google Scholar 

  • Yao F, Wu Q, Lei Y, Guo W, Xu Y (2008) Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab 93:90–98

    Article  CAS  Google Scholar 

  • Zah R, Hischier R, Leão AL, Braun I (2007) Curauá fibers in the automobile industry—a sustainability assessment. J Clean Prod 15:1032–1040

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank CNPq, CAPES and FAPERGS. In addition, the authors would like to thank São Carlos Technology for donating the kenaf and jute fibers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heitor Luiz Ornaghi Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ornaghi, H.L., Poletto, M., Zattera, A.J. et al. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose 21, 177–188 (2014). https://doi.org/10.1007/s10570-013-0094-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-013-0094-1

Keywords

Navigation