Abstract
In spite of the significant potential of cellulose nanocrystals as functional nanoparticles for numerous applications, a fundamental understanding of the mechanical properties of defect-free, crystalline cellulose is still lacking. In this paper, the elasticity matrix for cellulose Iβ with hydrogen bonding network A was calculated using ab initio density functional theory with a semi-empirical correction for van der Waals interactions. The computed Young’s modulus is found to be 206 GPa along [001] (c-axis), 98 GPa along [010] (b-axis), and 19 GPa along [100] (a-axis). Full compliance matrices are reported for 1.0, 1.5 and 2.0 % applied strains Color contour surfaces that show variations of the Young’s modulus and average Poisson’s ratio with crystallographic direction revealed the extreme anisotropies of these important mechanical properties. The sensitivity of the elastic parameters to misalignments in the crystal were examined with 2D polar plots within selected planes containing specific bonding characteristics; these are used to explain the substantial variability in the reported experimental Young’s moduli values. Results for the lattice directions [001], [010] and [100] are within the range of reported experimental and other numerical values.
This is a preview of subscription content, access via your institution.









References
Antony J, Grimme S (2006) Density functional theory including dispersion corrections for intermolecular interactions in a large benchmark set of biologically relevant molecules. Phys Chem Chem Phys 8(45):5287–5293. doi:10.1039/b612585a
Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626
Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111(30):9138–9145. doi:10.1021/jp072258i
Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979
Bower AF (2011) Applied mechanics of solids. CRC press, Boca Raton, FL
Bučko T, Hafner J, Lebègue S, Ángyán JG (2010) Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J Phys Chem A 114(43):11814–11824. doi:10.1021/jp106469x
Bučko T, Tunega D, Ángyán JG, Hafner J (2011) Ab initio study of structure and interconversion of native cellulose phases. J Phys Chem A 115(35):10097–10105. doi:10.1021/jp205827y
Diddens I, Murphy B, Krisch M, Müller M (2008) Anisotropic elastic properties of cellulose measured using inelastic X-ray scattering. Macromolecules 41(24):9755–9759. doi:10.1021/ma801796u
Dri F, Shang S, Hector LG Jr, Zi-Kui Liu, Moon RJ, Zavattieri PD (in preparation, 2013) Study of thermodynamic and mechanical properties of crystalline cellulose
Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3):291–307. doi:10.1007/s10570-006-9046-3
Finkenstadt VL, Millane RP (1998) Crystal structure of valonia cellulose Iβ. Macromolecules 31(22):7776–7783. doi:10.1021/ma9804895
Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27(15):1787–1799. doi:10.1002/jcc.20495
Hafner J (2008) Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 29(13):2044–2078
Hector LG Jr, Herbst JF (2004) Electronic and elastic properties of RCo5 and RCo5Hn (R = La, Ce, Pr). J Alloy Compd 379(1–2):41–53. doi:10.1016/j.jallcom.2004.02.042
Hector LG Jr, Herbst JF, Capehart TW (2003) Electronic structure calculations for LaNi5 and LaNi5H7: energetics and elastic properties. J Alloy Compd 353(1–2):74–85. doi:10.1016/s0925-8388(02)01324-5
Hector L Jr, Herbst J, Wolf W, Saxe P, Kresse G (2007) Ab Initio thermodynamic and elastic properties of alkaline-earth metals and their hydrides. Phys Rev B 76(1):014121
Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a Coulomb potential. J Chem Phys 118:8207
Heyd J, Scuseria GE, Ernzerhof M (2006) Erratum:“Hybrid functionals based on a screened Coulomb potential”[J. Chem. Phys. 118, 8207 (2003)]. J Chem Phys 124:219906
Ishikawa A, Okano T, Sugiyama J (1997) Fine structure and tensile properties of ramie fibres in the crystalline form of cellulose I, II, IIII and IVI. Polymer 38(2):463–468. doi:10.1016/S0032-3861(96)00516-2
Jones RM (1975) Mechanics of composite materials, vol 2. Taylor & Francis, London
Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133
Kresse G, Furthmuller J (1996a) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6(1):15–50. doi:10.1016/0927-0256(96)00008-0
Kresse G, Furthmuller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186
Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269
Lahiji RF, Xu X, , Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir, 26(6): 4480–4488
Langan P, Sukumar N, Nishiyama Y, Chanzy H (2005) Synchrotron X-ray structures of cellulose Iβ and regenerated cellulose II at ambient temperature and 100 K. Cellulose 12(6):551–562. doi:10.1007/s10570-005-9006-3
Le Page Y, Saxe P (2002) Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys Rev B 65(10):104104
Leslie WC (1981) The physical metallurgy of steels. Hempisphere Publishing Corporation
Li Y, Lin M, Davenport JW (2011) Ab Initio studies of cellulose I: crystal structure, intermolecular forces, and interactions with water. J Phys Chem C 115(23):11533–11539. doi:10.1021/jp2006759
Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23(13):3266–3275. doi:10.1021/ma00215a012
Matthews JF, Beckham GT, Bergenstråhle-Wohlert M, Brady JW, Himmel ME, Crowley MF (2012) Comparison of cellulose Iβ simulations with three carbohydrate force fields. J Chem Theory Comput 8(2):735–748. doi:10.1021/ct2007692
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994
Nakamura KI, Wada M, Kuga S, Okano T (2004) Poisson’s ratio of cellulose Iβ and cellulose II. J Polym Sci Part B Polym Phys 42(7):1206–1211. doi:10.1002/polb.10771
Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys 33(11):1647–1651. doi:10.1002/polb.1995.090331110
Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082. doi:10.1021/ja0257319
Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. doi:10.1021/ja037055w
Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9(11):3133–3140. doi:10.1021/bm800726v
Nishiyama Y, Langan P, Wada M, Forsyth VT (2010) Looking at hydrogen bonds in cellulose. Acta Crystallogr Sect D 66(11):1172–1177. doi:10.1107/S0907444910032397
Pakzad A, Simonsen J, Heiden PA, Yassar RS (2012) Size effects on the nanomechanical properties of cellulose I nanocrystals. J Mater Res 27(3):528–536
Parthasarathi R, Bellesia G, Chundawat SPS, Dale BE, Langan P, Gnanakaran S (2011) Insights into hydrogen bonding and stacking interactions in cellulose. J Phys Chem A 115(49):14191–14202. doi:10.1021/jp203620x
Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868
Qi Y, Hector LG Jr (2004) Adhesion and adhesive transfer at aluminum/diamond interfaces: a first-principles study. Phys Rev B 69(23):235401
Qi Y, Hector LG (2007) Planar stacking effect on elastic stability of hexagonal boron nitride. Appl Phys Lett 90(8):081922–081923
Qi Y, Guo H, Hector LG, Timmons A (2010) Threefold increase in the Young’s modulus of graphite negative electrode during lithium intercalation. J Electrochem Soc 157(5):A558–A566
Roberts R, Rowe R, York P (1994) The Poisson’s ratio of microcrystalline cellulose. Int J Pharm 105(2):177–180
Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660. doi:10.1002/pol.1962.1205716551
Sakurada I, Ito T, Nakamae K (1964) Elastic moduli of polymer crystals for the chain axial direction. Die Makromolekulare Chem 75(1):1–10. doi:10.1002/macp.1964.020750101
Santiago Cintrón M, Johnson G, French A (2011) Young’s modulus calculations for cellulose Iβ by MM3 and quantum mechanics. Cellulose 18(3):505–516. doi:10.1007/s10570-011-9507-1
Shang S, Hector L Jr, Wang Y, Zhang H, Liu Z (2009) First-principles study of elastic and phonon properties of the heavy fermion compound CeMg. J Phys: Condens Matter 21(24):246001
Shang S-L, Hector LG Jr, Shi S, Qi Y, Wang Y, Liu Z-K (2012) Lattice dynamics, thermodynamics and elastic properties of monoclinic Li2CO3 from density functional theory. Acta Mater 60(13–14):5204–5216. doi:10.1016/j.actamat.2012.06.006
Šturcová A, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5(4):1333–1339
Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175. doi:10.1021/ma00014a033
Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32(8):1516–1526. doi:10.1016/0032-3861(91)90435-L
Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci Part B Polym Phys 40(11):1095–1102. doi:10.1002/polb.10166
Wada M, Nishiyama Y, Chanzy H, Forsyth T, Langan P (2008) The structure of celluloses. Powder Diffr 23(2):92–95
Wagner R, Moon R, Pratt J, Shaw G, Raman A (2011) Uncertainty quantification in nanomechanical measurements using the atomic force microscope. Nanotechnology 22(45):455703
Woodward C, Trinkle D, Hector L Jr, Olmsted D (2008) Prediction of dislocation cores in aluminum from density functional theory. Phys Rev Lett 100(4):045507
Wróbel J, Hector L Jr, Wolf W, Shang S, Liu Z, Kurzydłowski K (2012) Thermodynamic and mechanical properties of lanthanum–magnesium phases from density functional theory. J Alloy Compd 512(1):296–310
Wu X, Moon R, Martini A (2013) Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation. Cellulose 20(1):43–55. doi:10.1007/s10570-012-9823-0
Zuluaga MG, Dri FL, Moon RJ, Zavattieri PD (2013a) Anisotropy calculator—3D visualization toolkit. https://nanohub.org/tools/matrix2surface
Zuluaga MG, Dri FL, Moon RJ, Zavattieri PD (2013b) Crystalline cellulose—atomistic toolkit. https://nanohub.org/tools/ccamt
Acknowledgments
The authors wish to acknowledge the staff of the High Performance Computing Center at General Motors. Additional computational resources, networking, and support were provided by GM Information Systems and Services. R.J.M. and P.D.Z. are also grateful to financial support by the Forest Products Laboratory under USDA Grants: 11-JV-11111129-086, 07-CR-11111120-093, the Purdue Research Foundation and National Science Foundation through Grant No. CMMI-1131596.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dri, F.L., Hector, L.G., Moon, R.J. et al. Anisotropy of the elastic properties of crystalline cellulose Iβ from first principles density functional theory with Van der Waals interactions. Cellulose 20, 2703–2718 (2013). https://doi.org/10.1007/s10570-013-0071-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-013-0071-8
Keywords
- Crystalline cellulose
- Cellulose Iβ
- Density functional theory
- Young’s modulus