, Volume 20, Issue 6, pp 2745–2755 | Cite as

Thermal stability of surface-esterified cellulose and its composite with polyolefinic matrix

  • Miroslav JanicekEmail author
  • Ondrej Krejci
  • Roman Cermak
Original Paper


Thermal stability of hydrophobized cellulose powders was investigated from the perspective of potential use as filler in non-polar polyolefinic matrix. The hydrophobization was done by heterogeneous esterification with three carboxylic acids which differ in chain length (3, 10 and 18 carbons). Data measured by means of thermogravimetry (TG) were recalculated according to model-free isoconversional method to construct time–temperature plots. It was demonstrated that the esterification significantly decreases thermal stability of the material, which reduces feasible processing window. Under non-oxidative atmosphere, the single-step decomposition of materials is prevailing, while the process is more complex in air. In both cases the oleic acid esters showed the lowest stability and the original cellulose was the most stable. Finally, all powders were compounded with polyethylene or polypropylene. Obtained composites were then subjected to color measurement and TG. Even though the materials were partly degraded, which was indicated by the yellowish hue of the composites, virtually no impact of the filler pyrolysis on the polymer matrix decomposition was observed, particularly in case of decanoyl esters.


Cellulose Esterification Hydrophobization Stability Degradation Composite 



Authors gratefully acknowledge Mr. Radek Holubar for preparation of composites, Mr. Pavol Suly for his help with TG, Dr. Alena Kalendova for her assistance with initial FT-IR measurements, and Dr. Tomas Sedlacek for his help with supply of Arbocel®. All mentioned are from Tomas Bata University in Zlin. The work was supported by the Operational Programme Research and Development for Innovations cofounded by the European Regional Development Fund (ERDF) and national budget of Czech Republic within the framework of the Centre of Polymer Systems project (reg. no.: CZ.1.05/2.1.00/03.0111). Authors gratefully acknowledge also the financial support of this work by the internal grant of Tomas Bata University in Zlin, No. IGA/FT/2012/040 and No. IGA/FT/2013/012, funded from the resources of specific university research.


  1. Abdelmouleh M, Boufi S, Belgacem MN, Dufresne A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639. doi: 10.1016/j.compscitech.2006.07.003 CrossRefGoogle Scholar
  2. Bhuiyan MTR, Hirai N, Sobue N (2000) Changes of crystallinity in wood cellulose by heating treatment under dried and moist conditions. J Wood Sci 46:431–436. doi: 10.1007/BF00765800 CrossRefGoogle Scholar
  3. Devallencourt C, Saiter JM, Capitaine D (1996) Characterization of recycled celluloses: thermogravimetry/Fourier transform infra-red coupling and thermogravimetry investigations. Polym Degrad Stab 52:327–334. doi: 10.1016/0141-3910(95)00239-1 CrossRefGoogle Scholar
  4. George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41:1471–1485. doi: 10.1002/pen.10846 CrossRefGoogle Scholar
  5. Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762. doi: 10.1016/S0079-6700(01)00022-3 CrossRefGoogle Scholar
  6. Huang MR, Li XG (1998) Thermal degradation of cellulose and cellulose esters. J Appl Polym Sci 68:293–304. doi: 10.1002/(SICI)1097-4628(19980411)68:2<293:AID-APP11>3.0.CO;2-Z CrossRefGoogle Scholar
  7. Jandura P, Kokta BV, Riedl B (2000a) Fibrous long-chain organic acid cellulose esters and their characterization by diffuse reflectance FTIR spectroscopy, solid-state CP/MAS 13C-NMR, and X-ray diffraction. J Appl Polym Sci 78:1354–1365. doi: 10.1002/1097-4628(20001114)78:7<1354:AID-APP60>3.0.CO;2-V CrossRefGoogle Scholar
  8. Jandura P, Riedl B, Kokta B (2000b) Thermal degradation behavior of cellulose fibers partially esterified with some long chain organic acids. Polym Degrad Stab 70:387–394. doi: 10.1016/S0141-3910(00)00132-4 CrossRefGoogle Scholar
  9. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohyd Polym 86:1–18. doi: 10.1016/j.carbpol.2011.04.043 CrossRefGoogle Scholar
  10. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364. doi: 10.1016/j.carbpol.2007.05.040 CrossRefGoogle Scholar
  11. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi: 10.1002/anie.200460587 CrossRefGoogle Scholar
  12. Lee MY, Park WH (1999) Epoxidation of bacterial polyesters with unsaturated side chains V. Effect of crosslinking on thermal degradation of epoxidized polymers. Polym Degrad Stab 65:137–142. doi: 10.1016/S0141-3910(98)00229-8 CrossRefGoogle Scholar
  13. Li XG (1999) High-resolution thermogravimetry of cellulose esters. J Appl Polym Sci 71:573–578. doi: 10.1002/(SICI)1097-4628(19990124)71:4<573:AID-APP8>3.0.CO;2-R CrossRefGoogle Scholar
  14. Li XG, Huang MR, Bai H (1999) Thermal decomposition of cellulose ethers. J Appl Polym Sci 73:2927–2936. doi: 10.1002/(SICI)1097-4628(19990929)73:14<2927:AID-APP17>3.0.CO;2-K CrossRefGoogle Scholar
  15. Park WH, Lenz RW, Goodwin S (1999) Epoxidation of bacterial polyesters with unsaturated side chains: IV. Thermal degradation of initial and epoxidized polymers. Polym Degrad Stab 63:287–291. doi: 10.1016/S0141-3910(98)00107-4 CrossRefGoogle Scholar
  16. Polaskova M, Cermak R, Verney V et al (2013) Preparation of microfibers from wood/ionic liquid solutions. Carbohydr Polym 92:214–217. doi: 10.1016/j.carbpol.2012.08.089 CrossRefGoogle Scholar
  17. Spoljaric S, Genovese A, Shanks RA (2009) Polypropylene–microcrystalline cellulose composites with enhanced compatibility and properties. Compos Part A Appl Sci 40:791–799. doi: 10.1016/j.compositesa.2009.03.011 CrossRefGoogle Scholar
  18. Tome LC, Freire MG, Rebelo LPN et al (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13:2464–2470. doi: 10.1039/c1gc15432j CrossRefGoogle Scholar
  19. Uschanov P, Johansson LS, Maunu SL, Laine J (2010) Heterogeneous modification of various celluloses with fatty acids. Cellulose 18:393–404. doi: 10.1007/s10570-010-9478-7 CrossRefGoogle Scholar
  20. Vyazovkin S (1996) A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet 28:95–101. doi: 10.1002/(SICI)1097-4601(1996)28:2<95:AID-KIN4>3.0.CO;2-G CrossRefGoogle Scholar
  21. Vyazovkin S (1997) Advanced isoconversional method. J Therm Anal 49:1493–1499. doi: 10.1007/BF01983708 CrossRefGoogle Scholar
  22. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol Rapid Comm 27:1515–1532. doi: 10.1002/marc.200600404 CrossRefGoogle Scholar
  23. Vyazovkin S, Wight C (1999) Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 341:53–68CrossRefGoogle Scholar
  24. Vyazovkin S, Burnham AK, Criado JM et al (2011) ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. doi: 10.1016/j.tca.2011.03.034 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Miroslav Janicek
    • 1
    • 2
    Email author
  • Ondrej Krejci
    • 1
    • 2
  • Roman Cermak
    • 1
    • 2
  1. 1.Department of Polymer Engineering, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  2. 2.Centre of Polymer Systems, University InstituteTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations