Abstract
Inorganic salts are a natural component of biomass which have a significant effect on the product yields from a variety of biomass conversion processes. Understanding their effect on biomass at the microscopic level can help discover their mechanistic role. We present a study of the effect of aqueous sodium chloride on the largest component of biomass, cellulose, focused on the thermodynamic and structural effect of a sodium ion on the cellotetraose molecule and the cellulose fibril. Replica exchange molecular dynamics simulations of a cellotetraose molecule reveal a number of preferred cellulose-Na contacts and bridging positions. Large scale MD simulations on a model cellulose fibril find that Na+ perturbs the hydroxymethyl rotational state population and consequently disrupts the ‘native’ hydrogen bonding network.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Bellesia G, Shea JE (2009) What determines the structure and stability of kffe monomers, dimers and protofibrils. Biophys J 96:875–886
Bellesia G, Chundawat SPS, Langan P, Dale BE, Gnanakaran S (2011) Probing the early events associated with liquid ammonia pretreatment of native crystalline cellulose. Journal of Physical Chemistry B 115(32):9782–9788
Chen AA, Pappu RV (2007) Parameters of monovalent ions in the amber99 forcefield: assessment of inaccuracies and proposed improvements. J Phys Chem B 111(41):11884–11887
Chundawat SP, Bellesia G, Uppugundla N, da Costa Sousa L, Gao D, Cheh A, Agarwal UP, Bianchetti CM, Phillips GNJ, Langan P, Balan V, Gnanakaran S, Dale BE (2011) Restructuring crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133(29):11163–11174
Darden T, York D, Pedersen L (1993) Particle mesh ewald: an nlog(n) method for ewald sums in large systems. J Chem Phys 98(12):10089
Encinar JM, González JF, Rodríguez JJ, Ramiro MJ (2001) Catalysed and uncatalysed steam gasification of eucalyptus char: influence of variables and kinetic study. Fuel 80:2025–2036
Feller S, Zhang Y, Pastor R, Brooks B (1995) Constant pressure molecular dynamics simulation: the langevin piston method. J Chem Phys 103(11):4613
Jorgensen WL, Chandrasekhar J, D MJ, Impey RW, L KM (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935
Kern M, McGeehan JE, Streeter SD, Martin RNA, Besser K, Elias L, Eborall W, Malyon GP, Payne CM, Himmel M, Schnorr K, Beckham G, Cragg SM, Bruce NC, J MMS (2013) Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. P Natl Acad Sci USA 110(25):10189–10194
Kirschner K, Yongye A, Tschampel S, González-Outeiriño J, Daniels C, Foley L, Woods R (2008) Glycam06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29(4):622–655. doi:10.1002/jcc.20820
Martyna GJ, Tobias DJ, L KM (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101(5):4177
Matthews J, Beckham G, Bergenstråhle-Wohlert M, Brady J, Himmel M, Crowley M (2012) Comparison of cellulose iβ simulations with three carbohydrate force fields. Journal of Chemical Theory and Computation 8(2):735–748
Matthews JF, Bergenstråhle M, Beckham GT, Himmel ME, Nimlos MR, Brady JW, Crowley MF (2011) High-temperature behavior of cellulose I. J Phys Chem B 115(10):2155–2166. doi:10.1021/jp1106839
Mohan D, Pittman CU Jr, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3):848–889. doi:10.1021/ef0502397
Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082
O’Dell WB, Baker DC, McLain SE (2012) Structural evidence for inter-residue hydrogen bonding observed for cellobiose in aqueous solution. PLoS ONE 7(10):e45311
Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2009) Product distribution from fast pyrolysis of glucose-based carbohydrates. J Anal Appl Pyrolysis 86(2):323–330. doi:10.1016/j.jaap.2009.08.007
Patwardhan PR, Satrio JA, Brown RC, Shanks BH (2010) Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresour Technol 101:4646–4655
Patwardhan PR, Brown RC, Shanks BH (2011) Product distribution from the fast pyrolysis of hemicellulose. ChemSusChem 4(5):636–643. doi:10.1002/cssc.201000425, http://www.ncbi.nlm.nih.gov/pubmed/21548106
Phillips J, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R, Kale L, Schulten K (2005) Scalable molecular dynamics with namd. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289
Potvin J, Sorlien E, Hegner J, DeBoef B, Lucht BL (2011) Effect of NaCl on the conversion of cellulose to glucose and levulinic acid. Tetrahedron Lett 52:
Ryckaert J, Ciccotti G, Berendsen H (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341
Scott DS, Paterson L, Piskorz J, Radlein D (2001) Pretreatment of poplar wood for fast pyrolysis: rate of cation removal. J Anal Appl Pyrolysis 57(2):169–176. doi:10.1016/S0165-2370(00)00108-X
Shen T, Langan P, French AD, Johnson GP, Gnanakaran S (2009) Conformational flexibility of soluble cellulose oligomers: chain length and temperature dependence. J Am Chem Soc 131(41):14786–14794. doi:10.1021/ja9034158
Sugita Y, Okamoto Y (1999) Replica exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151
Swensen R, Wang J (1986) Replica monte carlo simulation of spin glasses. Phys Rev Lett 57:2607–2609
vom Stein T, Grande P, Sibilla F, Commandeur U, Fischer R, Leitner W, Dominguez~de Maria P (2010) Salt-assisted organic-acid-catalyzed depolymerization of cellulose. Green Chem 12:1844–1849
Wada M, Chanzy H, Nishiyama Y, Langan P (2004) Cellulose III(I) crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffracion. Macromolecules 37:8548–8555
Wang J, Cieplak P, Kollman P (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating energies of organic and biological molecules. J Comput Chem 21(12):1049–1074
Acknowledgments
We would like to thank CNLS and LANL Institutional Computing.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Bellesia, G., Gnanakaran, S. Sodium chloride interaction with solvated and crystalline cellulose: sodium ion affects the cellotetraose molecule and the cellulose fibril in aqueous solution. Cellulose 20, 2695–2702 (2013). https://doi.org/10.1007/s10570-013-0063-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10570-013-0063-8


