Skip to main content

Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution

Abstract

Ionic liquids dissolve cellulose in a more efficient and environmentally acceptable way than conventional methods in aqueous solution. An understanding of how ionic liquids act on cellulose is essential for improving pretreatment conditions and thus detailed knowledge of the interactions between the cations, anions and cellulose is necessary. Here, to explore ionic liquid effects, we perform all-atom molecular dynamics simulations of a cellulose microfibril in 1-butyl-3-methylimidazolium chloride and analyze site–site interactions and cation orientations at the solute–solvent interface. The results indicate that Cl anions predominantly interact with cellulose surface hydroxyl groups but with differences between chains of neighboring cellulose layers, referred to as center and origin chains; Cl binds to C3-hydroxyls on the origin chains but to C2- and C6-hydroxyls on the center chains, thus resulting in a distinct pattern along glucan chains of the hydrophilic fiber surfaces. In particular, Cl binding disrupts intrachain O3H–O5 hydrogen bonds on the origin chains but not those on the center chains. In contrast, Bmim+ cations stack preferentially on the hydrophobic cellulose surface, governed by non-polar interactions with cellulose. Complementary to the polar interactions between Cl and cellulose, the stacking interaction between solvent cation rings and cellulose pyranose rings can compensate the interaction between stacked cellulose layers, thus stabilizing detached cellulose chains. Moreover, a frequently occurring intercalation of Bmim+ on the hydrophilic surface is observed, which by separating cellulose layers can also potentially facilitate the initiation of fiber disintegration. The results provide a molecular description why ionic liquids are ideal cellulose solvents, the concerted action of anions and cations on the hydrophobic and hydrophilic surfaces being key to the efficient dissolution of the amphiphilic carbohydrate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  Google Scholar 

  2. Bellesia G, Chundawat S, Langan P, Dale B, Gnanakaran S (2011) Probing the early events associated with liquid ammonia pretreatment of native crystalline cellulose. J Phys Chem B 115:9782–9788

    Article  CAS  Google Scholar 

  3. BeMiller JN, Whistler L (1996) Carbohydrates. In: Fennema OR (ed) Food chemistry, 3rd edn. CRC, New York, pp 157–224

  4. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  5. Bergenstrahle M, Berglund L, Mazeau K (2007) Thermal response in crystalline Ibeta cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145

    Article  CAS  Google Scholar 

  6. Bergenstrahle M, Wohlert J, Himmel M, Brady J (2010) Simulation studies of the insolubility of cellulose. Carbohydr Res 345:2060–2066

    Article  CAS  Google Scholar 

  7. Bhargava BL, Balasubramanian S (2007) Refined potential model for atomistic simulations of ionic liquid [bmim][PF6]. J Chem Phys 127:114510

    Article  CAS  Google Scholar 

  8. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101

    Article  CAS  Google Scholar 

  9. Chen Y, Stipanovic A, Winter W, Wilson D, Kim Y-J (2007) Effect of digestion by pure cellulases on crystallinity and average chain length for bacterial and microcrystalline celluloses. Cellulose 14:283–293

    Article  CAS  Google Scholar 

  10. Cheng G, Varanasi P, Li C, Liu H, Melnichenko Y, Simmons B, Kent M, Singh S (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromolecules 12:933–941

    Article  CAS  Google Scholar 

  11. Cho H, Gross A, Chu J-W (2011) Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. J Am Chem Soc 133:14033–14041

    Article  CAS  Google Scholar 

  12. Chundawat S, Bellesia G, Uppugundla N, da Costa Sousa L, Gao D, Cheh A, Agarwal U, Bianchetti C, Phillips G, Langan P et al (2011) Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc 133:11163–11174

    Article  CAS  Google Scholar 

  13. Dadi A, Varanasi S, Schall C (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95:904–910

    Article  CAS  Google Scholar 

  14. Dadi A, Schall C, Varanasi S (2007) Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment. Appl Biochem Biotechnol 137–140:407–421

    Article  Google Scholar 

  15. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N*log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  16. El Seoud O, Koschella A, Fidale L, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromolecules 8:2629–2647

    Article  CAS  Google Scholar 

  17. Essmann U, Perera L, Berkowitz M, Darden T, Lee H, Pedersen L (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  18. Fukaya Y, Hayashi K, Kim SS, Ohna H (2010) Design of polar ionic liquids to solubilize cellulose without heating. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS, Washington, pp 55–66

  19. GAUSSIAN version 09 (2009) Wallingford, CT, Gaussian, Inc.

  20. Gericke M, Fardim P, Heinze T (2012) Ionic liquids–promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502

    Article  Google Scholar 

  21. Glasser WG, Atalla RH, Blackwell J, Brown RM Jr, Burchard W, French AD, Klemm DO, Nishiyama Y (2012) About the structure of cellulose: debating the Lindman Hypothesis. Cellulose 19:589–598

    Article  CAS  Google Scholar 

  22. Gray-Weale A (2009) Correlations in the structure and dynamics of ionic liquids. Aust J Chem 62:288–297

    Article  CAS  Google Scholar 

  23. Gross A, Chu J-W (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114:13333–13341

    Article  CAS  Google Scholar 

  24. Gross A, Bell A, Chu J-W (2012) Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride. Phys Chem Chem Phys 14:8425–8430

    Article  CAS  Google Scholar 

  25. Heinze T, Dorn S, Schöbitz M, Liebert T, Köhler S, Meister F (2008) Interactions of ionic liquids with polysaccharides-2: cellulose. Macromol Symp 262:8–22

    Article  CAS  Google Scholar 

  26. Hess B, Bekker H, Berendsen H, Fraaije J (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  27. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  28. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Google Scholar 

  29. Jorgensen W, Chandrasekhar J, Madura J, Impey R, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  30. Kim S-J, Dwiatmoko A, Choi J, Suh Y-W, Suh D, Oh M (2010) Cellulose pretreatment with 1-n-butyl-3-methylimidazolium chloride for solid acid-catalyzed hydrolysis. Bioresour Technol 101:8273–8279

    Article  CAS  Google Scholar 

  31. Kirschner K, Yongye A, Tschampel S, Gonzalez-Outeirino J, Daniels C, Foley L, Woods R (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29:622–655

    Article  CAS  Google Scholar 

  32. Klein H, Cheng X, Smith J, Shen T (2011) Transfer matrix approach to the hydrogen-bonding in cellulose Iα fibrils describes the recalcitrance to thermal deconstruction. J Chem Phys 135:085106

    Article  CAS  Google Scholar 

  33. Kowsari MH, Alavi S, Ashrafizaadeh M, Najafi B (2008) Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient. J Chem Phys 129:224508

    Article  CAS  Google Scholar 

  34. Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121:9940–9946

    Article  CAS  Google Scholar 

  35. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416

    Article  CAS  Google Scholar 

  36. Langan P, Gnanakaran S, Rector K, Pawley N, Fox D, Cho D, Hammel K (2011) Exploring new strategies for cellulosic biofuels production. Energy Environ Sci 4:3820–3833

    Article  CAS  Google Scholar 

  37. Li C, Knierim B, Manisseri C, Arora R, Scheller H, Auer M, Vogel K, Simmons B, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906

    Article  CAS  Google Scholar 

  38. Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  39. Liu L, Chen H (2006) Enzymatic hydrolysis of cellulose materials treated with ionic liquid [BMIM] Cl. Chin Sci Bull 51:2432–2436

    Article  CAS  Google Scholar 

  40. Liu Z, Huang S, Wang W (2004) A refined force field for molecular simulation of imidazolium-based ionic liquids. J Phys Chem B 108:12978–12989

    Article  CAS  Google Scholar 

  41. Liu C, Sun R, Zhang A, Li W (2010a) Dissolution of cellulose in ionic liquids and its application for cellulose processing and modification. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS, New York, pp 287–297

  42. Liu H, Sale K, Holmes B, Simmons B, Singh S (2010b) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301

    Article  CAS  Google Scholar 

  43. Liu H, Sale K, Simmons B, Singh S (2011) Molecular dynamics study of polysaccharides in binary solvent mixtures of an ionic liquid and water. J Phys Chem B 115:10251–10258

    Article  CAS  Google Scholar 

  44. Lucas M, Wagner G, Nishiyama Y, Hanson L, Samayam I, Schall C, Langan P, Rector K (2011) Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature. Bioresour Technol 102:4518–4523

    Article  CAS  Google Scholar 

  45. Margulis CJ, Stern HA, Berne BJ (2002) Computer simulation of a “Green Chemistry” Room-temperature ionic solvent. J Phys Chem B 106:12017–12021

    Article  CAS  Google Scholar 

  46. MATLAB version 7.12.0 (2011) Natick, Massachusetts: The MathWorks Inc.

  47. Matthews J, Skopec C, Mason P, Zuccato P, Torget R, Sugiyama J, Himmel M, Brady J (2006) Computer simulation studies of microcrystalline cellulose Iß. Carbohydr Res 341:138–152

    Article  CAS  Google Scholar 

  48. Matthews J, Himmel M, Brady J (2010) Simulations of the structure of cellulose. In: Nimlos MR, Crowley MF (eds) Computational modeling in lignocellulosic biofuel production, vol 1052. ACS Symposium Series, pp 17–53

  49. Matthews J, Bergenstrahle M, Beckham G, Himmel M, Nimlos M, Brady J, Crowley M (2011) High-temperature behavior of cellulose I. J Phys Chem B 115:2155–2166

    Article  CAS  Google Scholar 

  50. Medronho B, Romano A, Miguel M, Stigsson L, Lindman B (2012) Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19:581–587

    Article  CAS  Google Scholar 

  51. Mostofian B, Smith JC, Cheng X (2011) The solvation structures of cellulose microfibrils in ionic liquids. Interdiscip Sci Comput Life Sci 3:308–320

    Article  CAS  Google Scholar 

  52. Moulthrop J, Swatloski R, Moyna G, Rogers R (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559

    Google Scholar 

  53. Muldoon M, Gordon C, Dunkin I (2001) Investigations of solvent-solute interactions in room temperature ionic liquids using solvatochromic dyes. J Chem Soc Perkin Trans 2:433–435

    Article  CAS  Google Scholar 

  54. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iß from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  55. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  56. Ohira K, Abe Y, Kawatsura M, Suzuki K, Mizuno M, Amano Y, Itoh T (2012) Design of cellulose dissolving ionic liquids inspired by nature. ChemSusChem 5:388–391

    Article  CAS  Google Scholar 

  57. Raju SG, Balasubramanian S (2010) Role of cation symmetry in intermolecular structure and dynamics of room temperature ionic liquids: simulation studies. J Phys Chem B 114:6455–6463

    Article  CAS  Google Scholar 

  58. Ramadugu S, Chung Y-H, Xia J, Margulis C (2009) When sugars get wet. A comprehensive study of the behavior of water on the surface of oligosaccharides. J Phys Chem B 113:11003–11015

    Article  CAS  Google Scholar 

  59. Reichardt C (2005) Polarity of ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem 7:339–351

    Article  CAS  Google Scholar 

  60. Rinaldi R, Palkovits R, Schüth F (2008) Depolymerization of cellulose using solid catalysts in ionic liquids. Angew Chem Int Ed 47:8047–8050

    Article  CAS  Google Scholar 

  61. Samayam I, Hanson L, Langan P, Schall C (2011) Ionic-liquid induced changes in cellulose structure associated with enhanced biomass hydrolysis. Biomacromolecules 12:3091–3098

    Article  CAS  Google Scholar 

  62. Sellin M, Ondruschka B, Stark A (2010) Hydrogen bond acceptor properties of ionic liquids and their effect on cellulose solubility. In: Liebert T, Heinze T, Edgar K (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS, New York, pp 121–135

  63. Shen T, Gnanakaran S (2009) The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks. Biophys J 96:3032–3040

    Article  CAS  Google Scholar 

  64. Sun N, Rodriguez H, Rahman M, Rogers R (2011) Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass? Chem Commun 47:1405–1421

    Article  CAS  Google Scholar 

  65. Swatloski R, Spear S, Holbrey J, Rogers R (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  66. Urahata S, Ribeiro M (2005) Single particle dynamics in ionic liquids of 1-alkyl-3-methylimidazolium cations. J Chem Phys 122:024511

    Article  CAS  Google Scholar 

  67. Wada M, Nishiyama Y, Bellesia G, Forsyth T, Gnanakaran S, Langan P (2011) Neutron crystallographic and molecular dynamics studies of the structure of ammonia-cellulose I: rearrangement of hydrogen bonding during the treatment of cellulose with ammonia. Cellulose 18:191–206

    Article  CAS  Google Scholar 

  68. Wang H, Gurau G, Rogers R (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537

    Article  CAS  Google Scholar 

  69. Youngs TGA, Hardacre C, Holbrey JD (2007) Glucose solvation by the ionic liquid 1,3-dimethylimidazolium chloride: a simulation study. J Phys Chem B 111:13765–13774

    Article  CAS  Google Scholar 

  70. Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530

    Article  CAS  Google Scholar 

  71. Zavrel M, Bross D, Funke M, Buechs J, Spiess A (2009) High-throughput screening for ionic liquids dissolving (ligno-)cellulose. Bioresour Technol 100:2580–2587

    Article  CAS  Google Scholar 

  72. Zhang Y, Chan J (2010) Sustainable chemistry: imidazolium salts in biomass conversion and CO2 fixation. Energy Environ Sci 3:408–417

    Article  CAS  Google Scholar 

  73. Zhang L, Ruan D, Gao S (2002) Dissolution and regeneration of cellulose in NaOH/thiourea aqueous solution. J Polym Sci B Polym Phys 40:1521–1529

    Article  CAS  Google Scholar 

  74. Zhao Y, Liu X, Wang J, Zhang S (2012) Effects of cationic structure on cellulose dissolution in ionic liquids: a molecular dynamics study. ChemPhysChem 13:3126–3133

    Article  CAS  Google Scholar 

  75. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded from the BioEnergy Science Center, a DOE Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. It was also supported in part by the National Science Foundation through XSEDE resources provided by the National Institute of Computational Sciences under grant number TG-MCA08X032.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Cheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2472 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mostofian, B., Smith, J.C. & Cheng, X. Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution. Cellulose 21, 983–997 (2014). https://doi.org/10.1007/s10570-013-0018-0

Download citation

Keywords

  • Cellulose
  • Ionic liquids
  • Pretreatment
  • MD simulation