Skip to main content
Log in

Effect of pyrolysis conditions on the properties of carbonaceous nanofibers obtained from freeze-dried cellulose nanofibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Carbonaceous nanofibers (CsNFs) were produced by pyrolysis of cellulose nanofibers synthesised from wood pulp using a top-down approach. The effects of heat treatment conditions on the thermal, morphological, crystal and chemical properties of the CsNFs were investigated using TGA, SEM, XRD and FT-IR, respectively. The results showed that heat treatment conditions around the thermal decomposition temperature of cellulose greatly influence the morphology of resulting materials. Slow heating rates (1 °C/min) between 240 and 400 °C as well as prolonged isothermal heat treatment (17 h) at 240 °C were necessary to avoid destruction of the original fibrous morphology in carbonized nanofibers. On the other hand, such heat treatment had little effect on micron sized fibers. The optimized heat treatment conditions led to the release of oxygen and hydrogen from cellulose before thermal breakdown of glycosidic rings, which in turn prevented depolymerization and tar formation, resulting in the preservation of the fibrous morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agoda TG, Durand S, Berot S, Blassel C, Gaillard C, Garnier C et al (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686

    Article  Google Scholar 

  • Antal MJ, Friedman HL, Rogers FE (1980) Kinetics of cellulose pyrolysis in nitrogen and steam. Combust Sci Tech 21:141–152

    Article  CAS  Google Scholar 

  • Broido A, Yow H (1977) Resolution of molecular weight distributions in slightly pyrolysed cellulose using weibull function. J Appl Polym Sci 21:1677–1685

    Article  CAS  Google Scholar 

  • Brunner PH, Roberts PV (1980) The significance of heating rate on char yield and char properties in the pyrolysis of cellulose. Carbon 18:217–224

    Article  CAS  Google Scholar 

  • Cagnon BT, Xavier PY, Guillot A, Stoeckli F, Chambat GA (2009) Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Biores Tech 100:292–298

    Article  CAS  Google Scholar 

  • Cao Y, Tan HM (2002) Effects of cellulase on the modification of cellulose. Carbohydr Res 337:1291–1296

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811

    Article  CAS  Google Scholar 

  • Chung DDL (1994) Carbon fiber composites. Butterworth-Heinemann, Boston

    Google Scholar 

  • Ci LJ, Zhu HW, Wei BQ, Xu CL, Liang J, Wu DH (2000) Graphitization behavior of carbon nanofibers prepared by the floating catalyst method. Mater Lett 4:291–294

    Article  Google Scholar 

  • Davidson HW, Losty HHW (1963) The initial pyrolyses of celluloses. GEC J 30:22–28

    Google Scholar 

  • Fitzer E (1990) Fibres. In: Figueiredo JL, Bernardo CA, Baker RTK, Huttinger KJ (ed) Carbon Fibers Filaments and Composites. Kluwer Academic, Dordrecht, pp 3–41

  • Gaur S, Reed TB (1994) Prediction of cellulose decomposition rates from thermogravimetric data. Biomass Bioenerg 7:61–67

    Article  CAS  Google Scholar 

  • Guilminot E, Fischer F, Chatenet M, Rigacci A, Berthon FS, Achard P et al (2007) Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes, electrochemical characterization. J Power Sources 166:104–111

    Article  CAS  Google Scholar 

  • Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480

    Article  CAS  Google Scholar 

  • Jazaeri E, Zhang L, Wang X, Tsuzuki T (2011) Fabrication of carbon nanofiber by pyrolysis of freeze-dried cellulose nanofiber. Cellulose 18:1481–1485

    Article  CAS  Google Scholar 

  • Khezami L, Chetouani A, Taouk B, Capart R (2005) Production and characterisation of activated carbon from wood components in powder: cellulose, lignin, xylan. Powder Tech 157:48–56

    Article  CAS  Google Scholar 

  • Kim DY, Nishiyama Y, Wada M, Kuga S (2001) Graphitization of highly crystalline cellulose. Carbon 39:1051–1056

    Article  CAS  Google Scholar 

  • Morgan P (2005a) Structure of the carbon atom. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 1–13

  • Morgan P (2005b) The forms of carbon. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 24–31

  • Morgan P (2005c) Carbon fiber production using a PAN precursor. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 185–267

  • Morgan P (2005d) Carbon fiber production using a pitch based precursor. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 295–324

  • Morgan P (2005e) Carbon fiber production using a cellulosic based precursor. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 269–294

  • Nelson ML, O’connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I: spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324

    Article  CAS  Google Scholar 

  • Nelson ML, O’connor RT (1964b) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II: a new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341

    Article  CAS  Google Scholar 

  • Nogi M, Kurosaki F, Yano H, Takano M (2010) Preparation of nanofibrillar carbon from chitin nanofibers. Carbohydr Polym 81:919–924

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391

    Article  CAS  Google Scholar 

  • Salmon S, Hudson SM (1997) Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. J Macromol Sci R M C C37:199–276

    CAS  Google Scholar 

  • Sekiguchi Y, Frye JS, Shafizadeh F (1983) Structure and formation of cellulosic chars. J Appl Polym Sci 28:3513–3525

    Article  CAS  Google Scholar 

  • Sevilla M, Fuertes AB (2010) Graphitic carbon nanostructures from cellulose. Chem Phys Lett 490:63–68

    Article  CAS  Google Scholar 

  • Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Biores Tech 100:6496–6504

    Article  CAS  Google Scholar 

  • Shin S, Jang J, Yoon SH, Mochida I (1997) A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon 35:1739–1743

    Article  CAS  Google Scholar 

  • Tang MM, Bacon R (1964) Carbonization of cellulose fibers-I: low temperature pyrolysis. Carbon 2:211–214

    Article  CAS  Google Scholar 

  • Tran PA, Zhang LJ, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliver Rev 61:1097–1114

    Article  CAS  Google Scholar 

  • Uchida T, Anderson DP, Minus ML, Kumar S (2006) Morphology and modulus of vapor grown carbon nano fibers. J Mater Sci 41:5851–5856

    Article  CAS  Google Scholar 

  • Xie X, Goodell B, Zhang D, Nagle DC, Qian Y, Peterson ML et al (2009) Characterization of carbons derived from cellulose and lignin and their oxidative behavior. Biores Tech 100:1797–1802

    Article  CAS  Google Scholar 

  • Yoshino K, Matsuoka R, Nogami K, Yamanaka S, Watanabe K, Takahashi M et al (1990) Graphite film prepared by pyrolysis of bacterial cellulose. J Appl Phys 68:1720–1725

    Article  CAS  Google Scholar 

  • Zhang L, Tsuzuki T, Wang X (2010) Preparation and characterization on cellulose nanofiber film. Mater Sci Forum 654–656:1760–1763

    Article  Google Scholar 

  • Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC (2007) Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45:785–796

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Warren Batchelor at the Australian Pulp and Paper Institute in Monash University for providing the dried softwood pulp. The authors also thank Professor Xungai Wang, Dr Rongliang He, Dr. Jinfeng Wang and Dr. Ehsan Bafekrpour for their kind support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Tsuzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jazaeri, E., Tsuzuki, T. Effect of pyrolysis conditions on the properties of carbonaceous nanofibers obtained from freeze-dried cellulose nanofibers. Cellulose 20, 707–716 (2013). https://doi.org/10.1007/s10570-012-9858-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9858-2

Keywords

Navigation