Cellulose

, Volume 20, Issue 1, pp 509–524 | Cite as

Modification of cellulose/chitin mix fibers under different cold plasma conditions

  • Anamaria Sdrobiş
  • Ondrej Kylian
  • Hynek Biederman
  • Cornelia Vasile
Original Paper

Abstract

A two step process was used for the cellulose/chitin mix fibers modification: the first one consists in cold plasma activation followed by the second step the reaction with different chemical modifiers by subsequent impregnation or impregnation/coupling reaction. The activation has been performed under the action of four kinds of cold plasma discharges (discharge gases: air, oxygen, nitrogen and argon). The N-isopropylacrylamide, acrylic acid and oleic acid are used as modifiers. The modified samples were characterized by ATR-FTIR spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, thermogravimetry and differential thermal analysis. All results confirm the morphological and structural changes after plasma treatments which determine the modification of the cellulose/chitin mix fibers.

Graphical Abstract

Keywords

Fibers Cellulose Chitin Cold plasma N-isopropylacrylamide Acrylic acid Oleic acid 

References

  1. Biederman H, Osada Y (1992) Plasma polymerization processes. Elsevier Science Publishers, pp 1-5Google Scholar
  2. Blaker JJ, Lee KY, Menner A, Bismarck A (2009) Nanocomposite foams based on renewable resources synthesised from pickering emulsion templates, 17th international conference on composite materials, 27-31 July, Edinburgh International Conference Centre, Edinburgh, Uk, http://www.iccm-central.org/Proceedings/ICCM17proceedings/Themes/Behaviour/SUSTAIN%20GREEN%20COMP/F23.4%20Bismarck.pdf
  3. Bodin A, Gustafsson L, Gatenholm P (2006) Surface-engineered bacterial cellulose as template for crystallization of calcium phosphate. J Biomater Sci Polym Ed 17:435-447CrossRefGoogle Scholar
  4. Bryjak M, Gancarz I, Pozniak G (1999) Surface evaluation of plasma-modified polysulfone (Udel P1700) films. Langmuir 15:6400-6404CrossRefGoogle Scholar
  5. Choi YJ, Ahn Y, Kang MS, Jun HK, Kim IS, Moon SH (2004) Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. J Chem Technol Biol 79:79-84CrossRefGoogle Scholar
  6. Coats AW, Redfern JT (1964) Kinetic parameters from thermogravimetric data. Nature 201:68-69CrossRefGoogle Scholar
  7. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323-328CrossRefGoogle Scholar
  8. Hirano S, Midorikawa T (1998) Novel method for the preparation of N-acylchitosan fiber and N-acylchitosan-cellulose fiber. Biomaterials 19:293-297CrossRefGoogle Scholar
  9. Hirano S, Nakahira T, Nakagawa M, Kim SK (1999) The preparation and applications of functional fibres from crab shell chitin. J Biotechnol 70:373-377CrossRefGoogle Scholar
  10. Hua Q, Sitaru R, Denes F, Young RA (1997) Mechanisms of oxygen and argon RF plasma—induced surface chemistry of cellulose. Plasmas Polym 2:199-224CrossRefGoogle Scholar
  11. Ibrahim NA, Wan Yunus WMZ, Abu-Ilaiwi FA, Ab Rahman MZ, Bin Ahmad M, Dahlan KZM (2003) Graft copolymerization of methyl methacrylate onto oil palm empty fruit bunch fiber using H2O2/Fe2 + as an initator. J Appl Polym Sci 89:2233-2238CrossRefGoogle Scholar
  12. Ifuku S, Kadla JF (2008) Preparation of a thermosensitive highly regioselective cellulose/N-Isopropylacrylamide copolymer through atom transfer radical polymerization. Biomacromolecules 9:3308-3313CrossRefGoogle Scholar
  13. Kadla JF, Satoshi K (2004) Lignin-based polymer blends: analysis of intermolecular interactions in lignin-synthetic polymer blends. Compos Part A Appl Sci 35:395-400CrossRefGoogle Scholar
  14. Karklin VB, Erinsh PP (1971) Infrared spectroscopy of wood and its maio componente I quantitative comparison of infrared spectra in the study of wood and legnin. Khim Drev 7:83Google Scholar
  15. Klemann LP, Yarger RG, You X (1999) Surface modified cellulose as low calorie fluor replacements, US Patent 5906 852Google Scholar
  16. Kotelnikova NI (1992) Lignocellulose’s. In: Kennedy JF, Phillips GO, Williams PA (eds) Science, technology, development and use. Ellis Horwood Limt., p 597Google Scholar
  17. Martin AR, Manolache S, Denes F, Mattoso LHC (2002) Functionalization of sisal fibers and high-density polyethylene by cold plasma treatment. J Appl Polym Sci 85:2145-2154CrossRefGoogle Scholar
  18. Oniz-Magan AB, Pastor-Blas MM, Martin-Martinez JM (2005) Different performance of Ar, O2 and CO2 RF plasmas in the adhesion of thermoplastic rubber to polyurethane adhesive. Plasma Process Polym 14:177-191CrossRefGoogle Scholar
  19. Park SJ, Kim JS (2001) Influence of plasma treatment on microstructures and acid-base surface energetics of nanostructured carbon blacks: N2 plasma environment. J Colloid Interface Sci 244:336-341CrossRefGoogle Scholar
  20. Pimentel GC, Sederholm CH (1956) Correlation of infrared stretching frequencies and hydrogen bond distances in crystals. J Chem Phys 24:639CrossRefGoogle Scholar
  21. Popescu MC, Totolin M, Tibirna CM, Sdrobis A, Stevanovic T, Vasile C (2011) Grafting of softwood kraft pulps fibers with fatty acids under cold plasma conditions. Int J Biol Macromol 48:326-335CrossRefGoogle Scholar
  22. Raju G, Ratnam CT, Ibrahim NA, Ab Rahman MZ, Yunus WZW (2007) Graft copolymerization of methyl acrylate onto oil palm empty fruit bunch (OPEFB) fibre. Polym Plast Technol Eng 46:949-955CrossRefGoogle Scholar
  23. Sdrobiş A, Darie RN, Totolin M, Cazacu G, Vasile C (2012a) Low density polyethylene composites containing cellulose pulp fibers. Compos Part B Eng 43:1873-1880CrossRefGoogle Scholar
  24. Sdrobiş A, Ioanid GE, Stevanovic T, Vasile C (2012b) Modification of cellulose/chitin mix fibers with N-isopropylacrylamide and poly (N-isopropylacrylamide) under cold plasma conditions. Polym Int. doi:10.1002/pi.4268
  25. Shimizu Y, Kanagawa T, Saito Y (2005) Graft copolymerization of acrylic acid onto chitin/cellulose composite fiber. Sci Links Jpn Chitin Chitosan Res 11:53-58Google Scholar
  26. Shyong Siow K, Britcher L, Kumar S, Griesser JH (2006) Plasma methods for the generation of chemically reactive surfaces for biomolecule immobilization and cell colonization—A review. Plasma Process Polym 3:392-418CrossRefGoogle Scholar
  27. Singha AS, Rana AK (2011) Kinetics of graft copolymerization of acrylic acid onto cannabis indica fibre. Iran Polym J 20:913-929Google Scholar
  28. Struszczyk H (1986) Modification of lignins. III. Reaction of lignosulfonates with chlorophosphazenes. J Macromol Sci A 23:973-992CrossRefGoogle Scholar
  29. Takegawa A, Murakami M, Kaneko Y, Kadokawa J (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohyd Polym 79:85-90CrossRefGoogle Scholar
  30. Totolin M, Vasile C, Tibirna CM, Popescu MC (2008) Grafting of Spanish broom (Spartium Junceum) fibers with fatty acids under cold plasma conditions. Cell Chem Technol 42:317-333Google Scholar
  31. Urbanovici E, Segal E (1984) A new integral method of non-isothermal kinetic data evaluation. Thermochim Acta 80:389-393CrossRefGoogle Scholar
  32. Vasile C, Baican MC, Tibirna CM, Tuchilus C, Debarnot D, Pâslaru E, Poncin-Epaillard F (2011) Microwave plasma activation of a polyvinylidene fluoride surface for protein immobilization. J Phys D Appl Phys 44:475303CrossRefGoogle Scholar
  33. Wan CH, Kuo JF (2001) Infrared spectroscopic and mesomorphic studies of 4,4′-bis(-hydroxyalkoxy)-methylstilbenes. Liq Cryst 28:535-548CrossRefGoogle Scholar
  34. Zoppe JO, Venditti RA, Rojas OJ (2012) Pickering emulsions stabilized by cellulose nanocrystals grafted with thermo-responsive polymer brushes. J Colloid Interface Sci 369:202-209CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Anamaria Sdrobiş
    • 1
  • Ondrej Kylian
    • 2
  • Hynek Biederman
    • 2
  • Cornelia Vasile
    • 1
  1. 1.“P. Poni” Institute of Macromolecular ChemistryRomanian AcademyIasiRomania
  2. 2.Department of Polymer Physics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations