, Volume 20, Issue 1, pp 583–588 | Cite as

Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index

  • Alfred D. FrenchEmail author
  • Michael Santiago Cintrón


The X-ray diffraction-based Segal Crystallinity Index (CI) was calculated for simulated different sizes of crystallites for cellulose Iβ and II. The Mercury software was used, and different crystallite sizes were based on different input peak widths at half of the maximum peak intensity (pwhm). The two cellulose polymorphs, Iβ and II, gave different CIs despite having the same pwhm values and perfect periodicity. The higher CIs for cellulose II were attributed to a greater distance between the major peaks that are closest to the recommended 2-θ value for assessing the amorphous content. That results in less peak overlap at the recommended 2-θ value. Patterns calculated with simulated preferred orientation had somewhat higher CIs for cellulose Iβ, whereas there was very little effect on the CIs for cellulose II.


Crystallinity Diffraction Cellulose Polymorphs Crystallite size 



The authors thank Carlos Driemeier, Yongliang Liu, Yoshiharu Nishiyama, Sunkyu Park, Orlando Rojas and Edwin Stevens for comments on a pre-submission version of the paper.


  1. Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17(4):721–733. doi: CrossRefGoogle Scholar
  2. Azubuike CP, Rodríguez H, Okhamafe AO, Rogers RD (2012) Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution. Cellulose 19(2):425–433. doi: CrossRefGoogle Scholar
  3. Dollase WA (1986) Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J Appl Crystallogr 19(4):267–272. doi: CrossRefGoogle Scholar
  4. Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44(1):184–192. doi: CrossRefGoogle Scholar
  5. Hosemann R (1962) Crystallinity in high polymers, especially fibres. Polymer 3:349–392. doi: CrossRefGoogle Scholar
  6. Ioelovich M, Leykin A, Figovsky O (2010) Study of cellulose paracrystallinity. BioResources 5:1393–1407 Google Scholar
  7. Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2(2):410–416. doi: CrossRefGoogle Scholar
  8. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11(2):102–113. doi: CrossRefGoogle Scholar
  9. Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16(6):999–1015. doi: CrossRefGoogle Scholar
  10. Macrae CF, Gruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470. doi: CrossRefGoogle Scholar
  11. Newman RH (1999) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State NMR 15:21–29. doi: CrossRefGoogle Scholar
  12. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082. doi: CrossRefGoogle Scholar
  13. Nishiyama Y, Johnson GP, French A (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19(2):319–336. doi: CrossRefGoogle Scholar
  14. Park S, Johnson DK, Ishizawa CI, Parilla PA, Davis MF (2009) Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16(4):641–647. doi: CrossRefGoogle Scholar
  15. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. doi: CrossRefGoogle Scholar
  16. Schenzel K, Fischer S, Brendler E (2005) New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 12(3):223–231. doi: CrossRefGoogle Scholar
  17. Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr Ges Wiss Göttingen 26:98–100Google Scholar
  18. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36(1):23–40. doi: CrossRefGoogle Scholar
  19. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29(10):786–794. doi: CrossRefGoogle Scholar
  20. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576. doi: CrossRefGoogle Scholar
  21. Ward K (1950) Crystallinity of cellulose and its significance for the fiber properties. Text Res J 20(6):363–372. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht (outside the USA) 2012

Authors and Affiliations

  1. 1.Southern Regional Research CenterAgricultural Research Service, U.S. Department of AgricultureNew OrleansUSA

Personalised recommendations