, Volume 20, Issue 1, pp 67–81 | Cite as

Study on the thermoresponsive two phase transition processes of hydroxypropyl cellulose concentrated aqueous solution: from a microscopic perspective

Original Paper


In this paper, it was discovered that during the heating process from 35 to 63 °C, hydroxypropyl cellulose (HPC) concentrated aqueous solution (20 wt%) would first go through coil-to-globule transition and then sol–gel transition with temperature elevation. The microdynamic mechanisms of the two phase transitions were thoroughly illustrated using mid and near infrared spectroscopy in combination with two-dimensional correlation spectroscopy (2Dcos) and perturbation correlation moving window (PCMW) technique. Mid infrared spectroscopy is an effective way to study the hydrophobic interactions in HPC molecules. And near infrared spectroscopy is a potent method to study hydrogen bonds between HPC molecules and water molecules. Boltzmann fitting and PCMW could help determine the exact transition temperatures of each involving functional groups in the two processes. Moreover, 2Dcos was used to discern the sequential moving orders of the functional groups during the two phase transitions. Depending on the structure of HPC and the thermodynamic conditions, the dominating associative elements in either process might vary. During the coil-to-globule transition, HPC molecules precipitated to form an opaque system with mobility.It was discovered that the driving force of the coil-to-globule transition process in microdynamics could only be the dehydration and hydrophobic interactions of C–H groups. However, in the sol–gel transition, the system crosslinked to form a physical network with no mobility. The driving force of this process in microdynamics was primarily the self-assembly behavior of O–H groups in HPC “active molecules”.


Hydroxypropyl cellulose Two-dimensional correlation spectroscopy Coil-to-globule transition Sol–gel transition Hydrophobic interactions Hydrogen bonding 

Supplementary material

10570_2012_9816_MOESM1_ESM.pdf (153 kb)
Supplementary material 1 (PDF 153 kb)


  1. Adachi D, Katsumoto Y, Sato H, Ozaki Y (2002) Near-infrared spectroscopic study of interaction between methyl group and water in water-methanol mixtures. Appl Spectrosc 56(3):357–361. doi:10.1366/0003702021954728 CrossRefGoogle Scholar
  2. Alexandridis P, Hatton TA (1995) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block-copolymer surfactants in aqueous-solutions and at interfaces–thermodynamics, structure, dynamics, and modeling. Colloid Surf A- Physicochem Eng Asp 96(1–2):1–46. doi:10.1016/0927-7757(94)03028-x CrossRefGoogle Scholar
  3. Bumbu GG, Vasile C, Eckelt J, Wolf BA (2004) Investigation of the interpolymer complex between hydroxypropyl cellulose and maleic acid-styrene copolymer, 1-Dilute solutions studies. Macromol Chem Phys 205(14):1869–1876. doi:10.1002macp.200400253 CrossRefGoogle Scholar
  4. Carotenuto C, Grizzuti N (2006) Thermoreversible gelation of hydroxypropylcellulose aqueous solutions. Rheol Acta 45(4):468–473. doi:10.1007/s00397-005-0075-x CrossRefGoogle Scholar
  5. Chevillard C, Axelos MAV (1997) Phase separation of aqueous solution of methylcellulose. Colloid Polym Sci 275(6):537–545. doi:10.1007/s003960050116 CrossRefGoogle Scholar
  6. Clasen C, Kulicke WM (2001) Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Prog Polym Sci 26(9):1839–1919. doi:10.1016/s0079-6700(01)00024-7 CrossRefGoogle Scholar
  7. Czarnik-Matusewicz B, Pilorz S, Hawranek JP (2005) Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy. Anal Chim Acta 544(1–2):15–25. doi:10.1016/j.aca.2005.04.040 CrossRefGoogle Scholar
  8. Du JZ, Sun TM, Weng SQ, Chen XS, Wang J (2007) Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers. Biomacromolecules 8(11):3375–3381. doi:10.1021/bm700474b CrossRefGoogle Scholar
  9. Gao J, Haidar G, Lu XH, Hu ZB (2001) Self-association of hydroxypropylcellulose in water. Macromolecules 34(7):2242–2247. doi:10.1021/ma001631g CrossRefGoogle Scholar
  10. Gruenloh CJ, Florio GM, Carney JR, Hagemeister FC, Zwier TS (1999) C-H stretch modes as a probe of H-bonding in methanol-containing clusters. J Phys Chem A 103(4):496–502. doi:10.1021/jp983629l CrossRefGoogle Scholar
  11. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68(1):34–45. doi:10.1016/j.ejpb.2007.02.025 CrossRefGoogle Scholar
  12. Kobayashi K, Huang CI, Lodge TP (1999) Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32(21):7070–7077. doi:10.1021/ma990242n CrossRefGoogle Scholar
  13. Li L, Shan H, Yue CY, Lam YC, Tam KC, Hu X (2002) Thermally induced association and dissociation of methylcellulose in aqueous solutions. Langmuir 18(20):7291–7298. doi:10.1021/la020029b CrossRefGoogle Scholar
  14. Lozinsky VI, Simenel IA, Kulakova VK, Kurskaya EA, Babushkina TA, Klimova TP, Burova TV, Dubovik AS, Grinberg VY, Galaev IY, Mattiasson B, Khokhlov AR (2003) Synthesis and studies of N-vinylcaprolactam/N-vinylimidazole copolymers that exhibit the “proteinlike” behavior in aqueous media. Macromolecules 36(19):7308–7323. doi:10.1021/ma034456n CrossRefGoogle Scholar
  15. Lozinsky VI, Simenel IA, Semenova MG, Belyakova LE, Il’in MM, Grinberg VY, Dubovik AS, Khokhlov AR (2006) Behavior of protein-like N-vinylcaprolactam and N-vinylimidazole copolymers in aqueous solutions. Polym Sci Ser A 48(4):435–443. doi:10.1134/s0965545x06040134 CrossRefGoogle Scholar
  16. Lu XH, Hu ZB, Schwartz J (2002) Phase transition behavior of hydroxypropylcellulose under interpolymer complexation with poly (acrylic acid). Macromolecules 35(24):9164–9168. doi:10.1021/ma0208842 CrossRefGoogle Scholar
  17. Maeda Y (2001) IR spectroscopic study on the hydration and the phase transition of poly(vinyl methyl ether) in water. Langmuir 17(5):1737–1742. doi:10.1021/la001346q CrossRefGoogle Scholar
  18. Maeda Y, Higuchi T, Ikeda I (2000) Change in hydration state during the coil-globule transition of aqueous solutions of poly(N-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir 16(19):7503–7509. doi:10.1021/la0001575 CrossRefGoogle Scholar
  19. Mori H, Kato I, Saito S, Endo T (2010) Proline-based block copolymers displaying upper and lower critical solution temperatures. Macromolecules 43(3):1289–1298. doi:10.1021/ma902002b CrossRefGoogle Scholar
  20. Morita S, Shinzawa H, Noda I, Ozaki Y (2006) Perturbation-correlation moving-window two-dimensional correlation spectroscopy. Appl Spectrosc 60(4):398–406. doi:10.1366/000370206776593690 CrossRefGoogle Scholar
  21. Mustafa MB, Tipton DL, Barkley MD, Russo PS, Blum FD (1993) Dye diffusion in isotropic and liquid-crystalline aqueous (hydroxypropyl)cellulose. Macromolecules 26(2):370–378. doi:10.1021/ma00054a017 CrossRefGoogle Scholar
  22. Noda I (1993) Generalized 2-dimensional correlation method applicable to infrared, raman, and other types of spectroscopy. Appl Spectrosc 47(9):1329–1336. doi:10.1366/0003702934067694 CrossRefGoogle Scholar
  23. Noda I (2000) Determination of two-dimensional correlation spectra using the Hilbert transform. Appl Spectrosc 54(7):994–999. doi:10.1366/0003702001950472 CrossRefGoogle Scholar
  24. Noda I (2008) Recent advancement in the field of two-dimensional correlation spectroscopy. J Mol Struct 883:2–26. doi:10.1016/j.molstruc.2007.11.038 CrossRefGoogle Scholar
  25. Noda I, Story GM, Marcott C (1999) Pressure-induced transitions of polyethylene studied by two-dimensional infrared correlation spectroscopy. Vib Spectrosc 19(2):461–465. doi:10.1016/s0924-2031(98)00080-0 CrossRefGoogle Scholar
  26. Popescu MC, Filip D, Vasile C, Cruz C, Rueff JM, Marcos M, Serrano JL, Singurel G (2006) Characterization by fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of PAMAM dendrimer. J Phys Chem B 110(29):14198–14211. doi:10.1021/jp061311k CrossRefGoogle Scholar
  27. Sun ST, Wu PY (2011) Spectral insights into gelation microdynamics of N-octyl-D-gluconamide in water. Soft Matter 7(14):6451–6456. doi:10.1039/c1sm05548h CrossRefGoogle Scholar
  28. Sun BJ, Lin YA, Wu PY (2007) Structure analysis of poly(N-isopropylacrylamide) using near-infrared spectroscopy and generalized two-dimensional correlation infrared spectroscopy. Appl Spectrosc 61(7):765–771. doi:10.1366/000370207781393271 CrossRefGoogle Scholar
  29. Sun BJ, Lin YN, Wu PY, Siesler HW (2008) A FTIR and 2D-IR spectroscopic study on the microdynamics phase separation mechanism of the poly(N-isopropylacrylamide) aqueous solution. Macromolecules 41(4):1512–1520. doi:10.1021/ma702062h CrossRefGoogle Scholar
  30. Suto S, Suzuki K (1997) Crosslinked hydroxypropyl cellulose films retaining cholesteric liquid crystalline order. 2. Anisotropic swelling behaviour in water. Polymer 38(2):391–396. doi:10.1016/s0032-3861(96)00512-5 CrossRefGoogle Scholar
  31. Takeuchi M, Martra G, Coluccia S, Anpo M (2005) Investigations of the structure of H2O clusters adsorbed on TiO2 surfaces by near-infrared absorption spectroscopy. J Phys Chem B 109(15):7387–7391. doi:10.1021/jp040630d CrossRefGoogle Scholar
  32. Tamai Y, Tanaka H, Nakanishi K (1996) Molecular dynamics study of polymer-water interaction in hydrogels. 2. Hydrogen-bond dynamics. Macromolecules 29(21):6761–6769. doi:10.1021/ma960961r CrossRefGoogle Scholar
  33. Thomas M, Richardson HH (2000) Two-dimensional FT-IR correlation analysis of the phase transitions in a liquid crystal, 4’-n-octyl-4-cyanobiphenyl (8CB). Vib Spectrosc 24(1):137–146. doi:10.1016/s0924-2031(00)00086-2 CrossRefGoogle Scholar
  34. Wahlund PO, Galaev IY, Kazakov SA, Lozinsky VI, Mattiasson B (2002) “Protein-like” copolymers: effect of polymer architecture on the performance in bioseparation process. Macromol Biosci 2(1):33–42. doi:10.1002/1616-5195(20020101)2:1<33:aid-mabi33>3.3.co;2-1 CrossRefGoogle Scholar
  35. Wei H, Cheng SX, Zhang XZ, Zhuo RX (2009) Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci 34(9):893–910. doi:10.1016/j.progpolymsci.2009.05.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced MaterialsFudan UniversityShanghaiChina

Personalised recommendations