, Volume 19, Issue 6, pp 1837–1854 | Cite as

Ultrastructure of cellulose crystallites in flax textile fibres

  • Benoît DucheminEmail author
  • Anthony Thuault
  • Aurélie Vicente
  • Baptiste Rigaud
  • Christian Fernandez
  • Sophie Eve
Original Paper


Seven varieties of flax (Linum usitatissimum) fibres were analyzed in order to gain a deeper insight into the morphological features of the crystalline assembly. Different spectroscopic techniques and a chemical bleaching process were used to provide an accurate description of the lateral arrangement of the polysaccharide chains within the fibre cell wall. The flax fibres were analyzed in their natural state and after an extraction treatment of the non-crystalline components such as hemicelluloses, pectins and phenolics. The chemical bleaching process consisted of a Soxhlet extraction in toluene, a sodium chlorite treatment and an alkaline extraction of the residual hemicelluloses. Solid-state 13C nuclear magnetic resonance (NMR) confirmed the sequential removal of the non-cellulosic components from the flax cell wall. Both wide-angle X-ray diffraction (WAXD) and solid-state 13C NMR provided measures of the crystallite thicknesses and overall crystallinities before and after treatment. The existence of non-cellulosic highly ordered paracrystalline domains was also evidenced by proton spin relaxation time calculation. Whereas the overall crystallinity determined by WAXD decreased after treatment, the cellulose crystallinity calculated with the help of the solid-state 13C NMR slightly increased. This is explained by the difference in chemical selectivity between these two techniques and by the paracrystalline state of both hemicelluloses and pectins. Strong adhesion between cellulose crystallites, hemicelluloses and pectins in the fibres was evidenced by low spin–spin relaxation times and by an increase in crystallite thickness after bleaching. A simple model is proposed that describes the rearrangement of the macromolecules during the bleaching process.


WAXD 13C solid-state NMR Peak-fitting PCA Flax fibres 



We would like to thank Mr. Cyril Jouannic and Abdellatif Chachdi for their assistance with the extraction work. Mr. Franck Gascoin and Philippe Bazin are acknowledged for their help with, respectively, the amorphous cellulose preparation and the FTIR spectroscopy.

Supplementary material

10570_2012_9786_MOESM1_ESM.jpeg (342 kb)
Supplementary material 1 (JPEG 341 kb)


  1. Agarwal U, Reiner R, Ralph S (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733. doi: 10.1007/s10570-010-9420-z CrossRefGoogle Scholar
  2. Andersson S, Serimaa R, Paakkari T et al (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537Google Scholar
  3. Andrew ER, Bradbury A, Eades RG (1959) Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Published online: 27 June 1959. doi:  10.1038/1831802a0
  4. Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–19. doi: 10.1016/S0926-2040(99)00042-9 CrossRefGoogle Scholar
  5. Atalla RH, Gast JC, Sindorf DW et al (1980) Carbon-13 NMR spectra of cellulose polymorphs. J Am Chem Soc 102:3249–3251CrossRefGoogle Scholar
  6. Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos A Appl Sci Manuf 33:939–948CrossRefGoogle Scholar
  7. Barneto AG, Vila C, Ariza J, Vidal T (2010) Thermogravimetric measurement of amorphous cellulose content in flax fibre and flax pulp. Cellulose 18:17–31. doi: 10.1007/s10570-010-9472-0 CrossRefGoogle Scholar
  8. Bootten TJ, Harris PJ, Melton LD, Newman RH (2004) Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan–cellulose interactions in the cell wall. J Exp Bot 55:571–583. doi: 10.1093/jxb/erh065 CrossRefGoogle Scholar
  9. Charlet K, Jernot JP, Eve S et al (2010) Multi-scale morphological characterisation of flax: from the stem to the fibrils. Carbohydr Polym 82:54–61. doi: 10.1016/j.carbpol.2010.04.022 CrossRefGoogle Scholar
  10. Chen W, Yu H, Liu Y et al (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. doi: 10.1007/s10570-011-9497-z CrossRefGoogle Scholar
  11. Clair B, Thibaut B, Sugiyama J (2005) On the detachment of the gelatinous layer in tension wood fiber. J Wood Sci 51:218–221. doi: 10.1007/s10086-004-0648-9 CrossRefGoogle Scholar
  12. Conner AH (1995) Size exclusion chromatography of cellulose and cellulose derivatives. Chromatogr Sci Ser 69:331–352Google Scholar
  13. Cullen LE, MacFarlane C (2005) Comparison of cellulose extraction methods for analysis of stable isotope ratios of carbon and oxygen in plant material. Tree Physiol 25:563–569. doi: 10.1093/treephys/25.5.563 CrossRefGoogle Scholar
  14. Day A, Ruel K, Neutelings G et al (2005) Lignification in the flax stem: evidence for an unusual lignin in bast fibers. Planta 222:234–245. doi: 10.1007/s00425-005-1537-1 CrossRefGoogle Scholar
  15. Driemeier C, Calligaris GA (2010) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44:184–192. doi: 10.1107/S0021889810043955 CrossRefGoogle Scholar
  16. Duchemin B, Newman R, Staiger M (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14:311–320CrossRefGoogle Scholar
  17. Earl WL, VanderHart DL (1980) High resolution, magic angle sampling spinning carbon-13 NMR of solid cellulose I. J Am Chem Soc 102:3251–3252CrossRefGoogle Scholar
  18. Eronen P, Ã-sterberg M, Heikkinen S et al (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydrate Polym 86:1281–1290. doi: 10.1016/j.carbpol.2011.06.031 Google Scholar
  19. Evans R, Newman RH, Roick UC et al (1995) Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, X-ray diffraction and solid state NMR results. Holzforschung 49:498–504. doi: 10.1515/hfsg.1995.49.6.498 CrossRefGoogle Scholar
  20. Franck RR (2005) Bast and other plant fibres. Woodhead Publishing Limited, CRC Press, CambridgeCrossRefGoogle Scholar
  21. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101. doi: 10.1006/jmre.1999.1896 CrossRefGoogle Scholar
  22. Gast JC, Atalla RH, McKelvey RD (1980) The 13c-n.m.r. spectra of the xylo- and cello-oligosaccharides. Carbohydr Res 84:137–146CrossRefGoogle Scholar
  23. Girault R, Bert F, Rihouey C et al (1997) Galactans and cellulose in flax fibres: putative contributions to the tensile strength. Int J Biol Macromol 21:179–188. doi: 10.1016/S0141-8130(97)00059-7 CrossRefGoogle Scholar
  24. Gjønnes J, Norman N (1958) The use of half width and position of the lines in the x-ray diffractograms of native cellulose to characterize the structural properties of the samples. Acta Chem Scand 12:2028–2033CrossRefGoogle Scholar
  25. Gorshkova TA, Wyatt SE, Salnikov VV et al (1996) Cell-wall polysaccharides of developing flax plants. Plant Physiol 110:721–729. doi: 10.1104/pp.110.3.721 Google Scholar
  26. Gorshkova TA, Salnikov VV, Pogodina NM et al (2000) Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues. Ann Bot 85:477–486CrossRefGoogle Scholar
  27. Gorshkova T, Gurjanov O, Mikshina P et al (2010) Specific type of secondary cell wall formed by plant fibers. Russ J Plant Physiol 57:328–341. doi: 10.1134/S1021443710030040 CrossRefGoogle Scholar
  28. Goubet F, Bourlard T, Girault R et al (1995) Structural features of galactans from flax fibres. Carbohydr Polym 27:221–227. doi: 16/0144-8617(95)00063-D CrossRefGoogle Scholar
  29. Gröndahl M, Eriksson L, Gatenholm P (2011) Material properties of plasticized hardwood Xylans for potential application as oxygen barrier films. Biomacromolecules 5:1528–1535. doi: 10.1021/bm049925n CrossRefGoogle Scholar
  30. Gu J, Catchmark JM (2012) Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr Polym. doi: 10.1016/j.carbpol.2011.12.040 Google Scholar
  31. Gurjanov OP, Ibragimova NN, Gnezdilov OI, Gorshkova TA (2008) Polysaccharides, tightly bound to cellulose in cell wall of flax bast fibre: isolation and identification. Carbohydr Polym 72:719–729. doi: 16/j.carbpol.2007.10.017 CrossRefGoogle Scholar
  32. Hanus J, Mazeau K (2006) The xyloglucan-cellulose assembly at the atomic scale. Biopolymers 81:59–73CrossRefGoogle Scholar
  33. Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053. doi: 10.1103/PhysRev.128.2042 CrossRefGoogle Scholar
  34. Höije A, Gröndahl M, Tømmeraas K, Gatenholm P (2005) Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohydr Polym 61:266–275. doi: 10.1016/j.carbpol.2005.02.009 CrossRefGoogle Scholar
  35. Ioelovich M, Larina E (1999) Parameters of crystalline structure and their influence on the reactivity of cellulose I. Cellul Chem Technol 33:3–12Google Scholar
  36. Isogai A (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22:3168–3172CrossRefGoogle Scholar
  37. Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319CrossRefGoogle Scholar
  38. Isogai T, Yanagisawa M, Isogai A (2008) Degrees of polymerization (DP) and DP distribution of cellouronic acids prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation. Cellulose 16:117–127. doi: 10.1007/s10570-008-9245-1 CrossRefGoogle Scholar
  39. Jarvis MC (1994) Relationship of chemical shift to glycosidic conformation in the solid-state13C NMR spectra of (1→4)-linked glucose polymers and oligomers: anomeric and related effects. Carbohydr Res 259:311–318CrossRefGoogle Scholar
  40. Jarvis M (2003) Cellulose stacks up. Nature 426:611CrossRefGoogle Scholar
  41. Jarvis MC, Apperley DC (1990) Direct observation of cell wall structure in living plant tissues by solid-state 13C NMR spectroscopy. Plant Physiol 92:61–65. doi: 10.1104/pp.92.1.61 CrossRefGoogle Scholar
  42. Jarvis MC, McCann MC (2000) Macromolecular biophysics of the plant cell wall: concepts and methodology. Plant Physiol Biochem 38:1–13. doi: 10.1016/S0981-9428(00)00172-8 CrossRefGoogle Scholar
  43. Josefsson T, Lennholm H, Gellerstedt G (2001) Changes in cellulose supramolecular structure and molecular weight distribution during steam explosion of aspen wood. Cellulose 8:289–296CrossRefGoogle Scholar
  44. Kato T, Omachi S, Aso H (2002) Asymmetric gaussian and its application to pattern recognition. In: Caelli T, Amin A, Duin RPW et al (eds) Structural, syntactic, and statistical pattern recognition. Springer, Berlin, Heidelberg, pp 405–413CrossRefGoogle Scholar
  45. Kontturi E, Suchy M, Penttilä P et al (2011) Amorphous characteristics of an ultrathin cellulose film. Biomacromolecules 12:770–777. doi: 10.1021/bm101382q CrossRefGoogle Scholar
  46. Kotelnikova NE, Panarin EF, Serimaa R et al (2000) Study of flax structure by WAXS, IR and 13C NMR spectroscopy, and SEM. Cellulosic pulps, fibres and materials Woodhead Publishing Ltd, pp 169–180Google Scholar
  47. Krässig H, Schurz J, Steadman R et al (2002) Cellulose. Ullmann’s encyclopedia of industrial chemistry. Wiley online, Wiley-VCH Verlag GmbH & Co., pp 1–44Google Scholar
  48. Lennholm H, Iversen T (1995) Estimation of cellulose I and II in cellulosic samples by principal component analysis of 13 C-CP/MAS-NMR-spectra. Holzforschung 49:119–126. doi: 10.1515/hfsg.1995.49.2.119 CrossRefGoogle Scholar
  49. Lennholm H, Larsson T, Iversen T (1994) Determination of cellulose I[alpha] and I[beta] in lignocellulosic materials. Carbohydr Res 261:119–131. doi: 16/0008-6215(94)80011-1 CrossRefGoogle Scholar
  50. Leppänen K, Andersson S, Torkkeli M et al (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015. doi: 10.1007/s10570-009-9298-9 CrossRefGoogle Scholar
  51. Lorenzo-Seva U, Ferrando PJ (2006) FACTOR: a computer program to fit the exploratory factor analysis model. Behav Res Methods 38:88–91. doi: 10.3758/BF03192753 CrossRefGoogle Scholar
  52. Love GD, Snape CE, Jarvis MC, Morrison IM (1994) Determination of phenolic structures in flax fibre by solid-state 13C NMR. Phytochemistry 35:489–491. doi: 10.1016/S0031-9422(00)94788-5 CrossRefGoogle Scholar
  53. Macfarlane C, Warren CR, White DA, Adams MA (1999) A rapid and simple method for processing wood to crude cellulose for analysis of stable carbon isotopes in tree rings. Tree Physiol 19:831–835. doi: 10.1093/treephys/19.12.831 CrossRefGoogle Scholar
  54. Martins MA, Forato LA, Mattoso LH, Colnago LA (2006) A solid state 13C high resolution NMR study of raw and chemically treated sisal fibers. Carbohydr Polym 64:127–133CrossRefGoogle Scholar
  55. Maunu SL (2002) NMR studies of wood and wood product. Prog Nucl Magn Reson Spectrosc 40:151–174CrossRefGoogle Scholar
  56. Mazeau K (2011) On the external morphology of native cellulose microfibrils. Carbohydr Polym 84:524–532. doi: 10.1016/j.carbpol.2010.12.016 CrossRefGoogle Scholar
  57. McCusker LB, Von Dreele RB, Cox DE et al (1999) Rietveld refinement guidelines. J Appl Crystallogr 32:36–50. doi: 10.1107/S0021889898009856 CrossRefGoogle Scholar
  58. McDougall GJ (1993) Isolation and partial characterisation of the non-cellulosic polysaccharides of flax fibre. Carbohydr Res 241:227–236. doi: 16/0008-6215(93)80109-R CrossRefGoogle Scholar
  59. Mikkonen KS, Stevanic JS, Joly C et al (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose. doi: 10.1007/s10570-011-9524-0 Google Scholar
  60. Morvan C, Andème-Onzighi C, Girault R et al (2003) Building flax fibres: more than one brick in the walls. Plant Physiol Biochem 41:935–944. doi: 10.1016/j.plaphy.2003.07.001 CrossRefGoogle Scholar
  61. Müller M, Czihak C, Vogl G et al (1998) Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering. Macromolecules 31:3953–3957. doi: 10.1021/ma980004c CrossRefGoogle Scholar
  62. Nabors M (2008) Biologie végétale: structures, fonctionnement, écologie et biotechnologies. Benjamin CummingsGoogle Scholar
  63. Newman RH (1999a) Estimation of the relative proportions of cellulose Iα and Iβ in wood by carbon-13 NMR spectroscopy. Holzforschung 53:335–340CrossRefGoogle Scholar
  64. Newman RH (1999b) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15:21–29CrossRefGoogle Scholar
  65. Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52. doi: 10.1023/B:CELL.0000014768.28924.0c CrossRefGoogle Scholar
  66. Newman RH, Hemmingson JA (1990) Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44:351CrossRefGoogle Scholar
  67. Newman RH, Hemmingson JA (1995) Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose 2:95–110CrossRefGoogle Scholar
  68. Newman RH, Davies LM, Harris PJ (1996) Solid-state 13C nuclear magnetic resonance characterization of cellulose in the cell walls of arabidopsis thaliana leaves. Plant Physiol 111:475–485Google Scholar
  69. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I beta from synchrotron x-ray and neutron fibre diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  70. Paes S, Sun S, MacNaughtan W et al (2010) The glass transition and crystallization of ball milled cellulose. Cellulose 17:693–709. doi: 10.1007/s10570-010-9425-7 CrossRefGoogle Scholar
  71. Peng X, Ren J, Zhong L, Sun R (2011) Nanocomposite films based on Xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12:3321–3329. doi: 10.1021/bm2008795 CrossRefGoogle Scholar
  72. Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590CrossRefGoogle Scholar
  73. Preston RD (1974) The physical biology of plant cell walls. Chapman and Hall, LondonGoogle Scholar
  74. Renard CMGC, Voragen AGJ, Thibault JF, Pilnik W (1990) Studies on apple protopectin: I. Extraction of insoluble pectin by chemical means. Carbohydr Polym 12:9–25. doi: 16/0144-8617(90)90101-W CrossRefGoogle Scholar
  75. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. doi: 10.1107/S0021889869006558 CrossRefGoogle Scholar
  76. Roland JC, Mosiniak M, Roland D (1995) Dynamique du positionnement de la cellulose dans les parois des fibres textiles du lin (Linum usitatissimum). Acta Bot Gallica 142:463–484Google Scholar
  77. Rondeau-Mouro C, Bizot H, Bertrand D (2011) Chemometric analyses of the 1H–13C cross-polarization build-up of celluloses NMR spectra: a novel approach for characterizing the cellulose crystallites. Carbohydr Polym 84:539–549. doi: 10.1016/j.carbpol.2010.12.018 CrossRefGoogle Scholar
  78. Sakthivel A, French AD, Eckhardt B, Young RA (1987) Application of the Rietveld crystal structure refinement method to cellotetraose. ACS symposium series, pp 68–87Google Scholar
  79. Segal L, Creely JJ, Jr AEM, Conrad MC (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res J 29:786–794Google Scholar
  80. Snegireva A, Ageeva M, Amenitskii S et al (2010) Intrusive growth of sclerenchyma fibers. Russ J Plant Physiol 57:342–355. doi: 10.1134/S1021443710030052 CrossRefGoogle Scholar
  81. Stevanović T, Perrin D (2009) Chimie du bois. Presses polytechniques et universitaires romandesGoogle Scholar
  82. Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576. doi: 10.1007/s10570-005-9001-8 CrossRefGoogle Scholar
  83. Vanderhart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state carbon-13 NMR. Macromolecules 17:1465–1472CrossRefGoogle Scholar
  84. Vincent JF (2000) A unified nomenclature for plant fibres for industrial use. Appl Compos Mater 7:269–271CrossRefGoogle Scholar
  85. Vonk CG (1973) Computerization of Ruland’s X-ray method for determination of the crystallinity in polymers. J Appl Crystallogr 6:148–152. doi: 10.1107/S0021889873008332 CrossRefGoogle Scholar
  86. Wardrop AB (1962) Cell wall organization in higher plants I. The primary wall. Botanical Rev 28:241–285. doi: 10.1007/BF02860816 CrossRefGoogle Scholar
  87. Weinkamer R, Fratzl P (2011) Mechanical adaptation of biological materials—the examples of bone and wood. Mater Sci Eng, C 31:1164–1173. doi: 16/j.msec.2010.12.002 CrossRefGoogle Scholar
  88. Whitney SE, Brigham JE, Darke AH et al (1995) In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J 8:491–504CrossRefGoogle Scholar
  89. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129CrossRefGoogle Scholar
  90. Wise LE, Murphy M, d’ Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J 122:35–43Google Scholar
  91. Yamashiki T, Matsui T, Saitoh M et al (1990) Characterisation of cellulose treated by the steam explosion method. Part 2: effect of treatment conditions on changes in morphology, degree of polymerisation, solubility in aqueous sodium hydroxide and supermolecular structure of soft wood pulp during steam explosion. Br Polym J 22:121–128CrossRefGoogle Scholar
  92. Zavadskii AE (2004) X-ray diffraction method of determining the degree of crystallinity of cellulose materials of different anisotropy. Fibre Chem 36:425–430. doi: 10.1007/s10692-005-0031-7 CrossRefGoogle Scholar
  93. Zhang Q, Brumer H, Ågren H, Tu Y (2011) The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation. Carbohydr Res 346:2595–2602. doi: 10.1016/j.carres.2011.09.007 CrossRefGoogle Scholar
  94. Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Benoît Duchemin
    • 1
    Email author
  • Anthony Thuault
    • 1
  • Aurélie Vicente
    • 2
  • Baptiste Rigaud
    • 2
  • Christian Fernandez
    • 2
  • Sophie Eve
    • 3
  1. 1.LOMC, UMR 6294, CNRS-Université du HavreLe HavreFrance
  2. 2.Laboratoire Catalyse et Spectrochimie (LCS)ENSICAEN, Université de Caen, CNRSCaenFrance
  3. 3.Laboratoire de Cristallographie et de Sciences des MatériauxENSICAEN, Université de Caen, CNRSCaenFrance

Personalised recommendations