Skip to main content
Log in

Ultrastructure of cellulose crystallites in flax textile fibres

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Seven varieties of flax (Linum usitatissimum) fibres were analyzed in order to gain a deeper insight into the morphological features of the crystalline assembly. Different spectroscopic techniques and a chemical bleaching process were used to provide an accurate description of the lateral arrangement of the polysaccharide chains within the fibre cell wall. The flax fibres were analyzed in their natural state and after an extraction treatment of the non-crystalline components such as hemicelluloses, pectins and phenolics. The chemical bleaching process consisted of a Soxhlet extraction in toluene, a sodium chlorite treatment and an alkaline extraction of the residual hemicelluloses. Solid-state 13C nuclear magnetic resonance (NMR) confirmed the sequential removal of the non-cellulosic components from the flax cell wall. Both wide-angle X-ray diffraction (WAXD) and solid-state 13C NMR provided measures of the crystallite thicknesses and overall crystallinities before and after treatment. The existence of non-cellulosic highly ordered paracrystalline domains was also evidenced by proton spin relaxation time calculation. Whereas the overall crystallinity determined by WAXD decreased after treatment, the cellulose crystallinity calculated with the help of the solid-state 13C NMR slightly increased. This is explained by the difference in chemical selectivity between these two techniques and by the paracrystalline state of both hemicelluloses and pectins. Strong adhesion between cellulose crystallites, hemicelluloses and pectins in the fibres was evidenced by low spin–spin relaxation times and by an increase in crystallite thickness after bleaching. A simple model is proposed that describes the rearrangement of the macromolecules during the bleaching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal U, Reiner R, Ralph S (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733. doi:10.1007/s10570-010-9420-z

    Article  CAS  Google Scholar 

  • Andersson S, Serimaa R, Paakkari T et al (2003) Crystallinity of wood and the size of cellulose crystallites in Norway spruce (Picea abies). J Wood Sci 49:531–537

    Google Scholar 

  • Andrew ER, Bradbury A, Eades RG (1959) Removal of dipolar broadening of nuclear magnetic resonance spectra of solids by specimen rotation. Published online: 27 June 1959. doi: 10.1038/1831802a0

  • Atalla RH, VanderHart DL (1999) The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 15:1–19. doi:10.1016/S0926-2040(99)00042-9

    Article  CAS  Google Scholar 

  • Atalla RH, Gast JC, Sindorf DW et al (1980) Carbon-13 NMR spectra of cellulose polymorphs. J Am Chem Soc 102:3249–3251

    Article  CAS  Google Scholar 

  • Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos A Appl Sci Manuf 33:939–948

    Article  Google Scholar 

  • Barneto AG, Vila C, Ariza J, Vidal T (2010) Thermogravimetric measurement of amorphous cellulose content in flax fibre and flax pulp. Cellulose 18:17–31. doi:10.1007/s10570-010-9472-0

    Article  Google Scholar 

  • Bootten TJ, Harris PJ, Melton LD, Newman RH (2004) Solid-state 13C-NMR spectroscopy shows that the xyloglucans in the primary cell walls of mung bean (Vigna radiata L.) occur in different domains: a new model for xyloglucan–cellulose interactions in the cell wall. J Exp Bot 55:571–583. doi:10.1093/jxb/erh065

    Article  CAS  Google Scholar 

  • Charlet K, Jernot JP, Eve S et al (2010) Multi-scale morphological characterisation of flax: from the stem to the fibrils. Carbohydr Polym 82:54–61. doi:10.1016/j.carbpol.2010.04.022

    Article  CAS  Google Scholar 

  • Chen W, Yu H, Liu Y et al (2011) Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose 18:433–442. doi:10.1007/s10570-011-9497-z

    Article  CAS  Google Scholar 

  • Clair B, Thibaut B, Sugiyama J (2005) On the detachment of the gelatinous layer in tension wood fiber. J Wood Sci 51:218–221. doi:10.1007/s10086-004-0648-9

    Article  CAS  Google Scholar 

  • Conner AH (1995) Size exclusion chromatography of cellulose and cellulose derivatives. Chromatogr Sci Ser 69:331–352

    CAS  Google Scholar 

  • Cullen LE, MacFarlane C (2005) Comparison of cellulose extraction methods for analysis of stable isotope ratios of carbon and oxygen in plant material. Tree Physiol 25:563–569. doi:10.1093/treephys/25.5.563

    Article  CAS  Google Scholar 

  • Day A, Ruel K, Neutelings G et al (2005) Lignification in the flax stem: evidence for an unusual lignin in bast fibers. Planta 222:234–245. doi:10.1007/s00425-005-1537-1

    Article  CAS  Google Scholar 

  • Driemeier C, Calligaris GA (2010) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44:184–192. doi:10.1107/S0021889810043955

    Article  Google Scholar 

  • Duchemin B, Newman R, Staiger M (2007) Phase transformations in microcrystalline cellulose due to partial dissolution. Cellulose 14:311–320

    Article  CAS  Google Scholar 

  • Earl WL, VanderHart DL (1980) High resolution, magic angle sampling spinning carbon-13 NMR of solid cellulose I. J Am Chem Soc 102:3251–3252

    Article  CAS  Google Scholar 

  • Eronen P, Ã-sterberg M, Heikkinen S et al (2011) Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydrate Polym 86:1281–1290. doi:10.1016/j.carbpol.2011.06.031

    Google Scholar 

  • Evans R, Newman RH, Roick UC et al (1995) Changes in cellulose crystallinity during kraft pulping. Comparison of infrared, X-ray diffraction and solid state NMR results. Holzforschung 49:498–504. doi:10.1515/hfsg.1995.49.6.498

    Article  CAS  Google Scholar 

  • Franck RR (2005) Bast and other plant fibres. Woodhead Publishing Limited, CRC Press, Cambridge

    Book  Google Scholar 

  • Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101. doi:10.1006/jmre.1999.1896

    Article  CAS  Google Scholar 

  • Gast JC, Atalla RH, McKelvey RD (1980) The 13c-n.m.r. spectra of the xylo- and cello-oligosaccharides. Carbohydr Res 84:137–146

    Article  CAS  Google Scholar 

  • Girault R, Bert F, Rihouey C et al (1997) Galactans and cellulose in flax fibres: putative contributions to the tensile strength. Int J Biol Macromol 21:179–188. doi:10.1016/S0141-8130(97)00059-7

    Article  CAS  Google Scholar 

  • Gjønnes J, Norman N (1958) The use of half width and position of the lines in the x-ray diffractograms of native cellulose to characterize the structural properties of the samples. Acta Chem Scand 12:2028–2033

    Article  Google Scholar 

  • Gorshkova TA, Wyatt SE, Salnikov VV et al (1996) Cell-wall polysaccharides of developing flax plants. Plant Physiol 110:721–729. doi:10.1104/pp.110.3.721

    CAS  Google Scholar 

  • Gorshkova TA, Salnikov VV, Pogodina NM et al (2000) Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues. Ann Bot 85:477–486

    Article  CAS  Google Scholar 

  • Gorshkova T, Gurjanov O, Mikshina P et al (2010) Specific type of secondary cell wall formed by plant fibers. Russ J Plant Physiol 57:328–341. doi:10.1134/S1021443710030040

    Article  CAS  Google Scholar 

  • Goubet F, Bourlard T, Girault R et al (1995) Structural features of galactans from flax fibres. Carbohydr Polym 27:221–227. doi:16/0144-8617(95)00063-D

    Article  CAS  Google Scholar 

  • Gröndahl M, Eriksson L, Gatenholm P (2011) Material properties of plasticized hardwood Xylans for potential application as oxygen barrier films. Biomacromolecules 5:1528–1535. doi:10.1021/bm049925n

    Article  Google Scholar 

  • Gu J, Catchmark JM (2012) Impact of hemicelluloses and pectin on sphere-like bacterial cellulose assembly. Carbohydr Polym. doi:10.1016/j.carbpol.2011.12.040

    Google Scholar 

  • Gurjanov OP, Ibragimova NN, Gnezdilov OI, Gorshkova TA (2008) Polysaccharides, tightly bound to cellulose in cell wall of flax bast fibre: isolation and identification. Carbohydr Polym 72:719–729. doi:16/j.carbpol.2007.10.017

    Article  CAS  Google Scholar 

  • Hanus J, Mazeau K (2006) The xyloglucan-cellulose assembly at the atomic scale. Biopolymers 81:59–73

    Article  Google Scholar 

  • Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053. doi:10.1103/PhysRev.128.2042

    Article  CAS  Google Scholar 

  • Höije A, Gröndahl M, Tømmeraas K, Gatenholm P (2005) Isolation and characterization of physicochemical and material properties of arabinoxylans from barley husks. Carbohydr Polym 61:266–275. doi:10.1016/j.carbpol.2005.02.009

    Article  Google Scholar 

  • Ioelovich M, Larina E (1999) Parameters of crystalline structure and their influence on the reactivity of cellulose I. Cellul Chem Technol 33:3–12

    CAS  Google Scholar 

  • Isogai A (1989) Solid-state CP/MAS 13C NMR study of cellulose polymorphs. Macromolecules 22:3168–3172

    Article  CAS  Google Scholar 

  • Isogai A, Atalla RH (1998) Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5:309–319

    Article  CAS  Google Scholar 

  • Isogai T, Yanagisawa M, Isogai A (2008) Degrees of polymerization (DP) and DP distribution of cellouronic acids prepared from alkali-treated celluloses and ball-milled native celluloses by TEMPO-mediated oxidation. Cellulose 16:117–127. doi:10.1007/s10570-008-9245-1

    Article  Google Scholar 

  • Jarvis MC (1994) Relationship of chemical shift to glycosidic conformation in the solid-state13C NMR spectra of (1→4)-linked glucose polymers and oligomers: anomeric and related effects. Carbohydr Res 259:311–318

    Article  CAS  Google Scholar 

  • Jarvis M (2003) Cellulose stacks up. Nature 426:611

    Article  CAS  Google Scholar 

  • Jarvis MC, Apperley DC (1990) Direct observation of cell wall structure in living plant tissues by solid-state 13C NMR spectroscopy. Plant Physiol 92:61–65. doi:10.1104/pp.92.1.61

    Article  CAS  Google Scholar 

  • Jarvis MC, McCann MC (2000) Macromolecular biophysics of the plant cell wall: concepts and methodology. Plant Physiol Biochem 38:1–13. doi:10.1016/S0981-9428(00)00172-8

    Article  CAS  Google Scholar 

  • Josefsson T, Lennholm H, Gellerstedt G (2001) Changes in cellulose supramolecular structure and molecular weight distribution during steam explosion of aspen wood. Cellulose 8:289–296

    Article  CAS  Google Scholar 

  • Kato T, Omachi S, Aso H (2002) Asymmetric gaussian and its application to pattern recognition. In: Caelli T, Amin A, Duin RPW et al (eds) Structural, syntactic, and statistical pattern recognition. Springer, Berlin, Heidelberg, pp 405–413

    Chapter  Google Scholar 

  • Kontturi E, Suchy M, Penttilä P et al (2011) Amorphous characteristics of an ultrathin cellulose film. Biomacromolecules 12:770–777. doi:10.1021/bm101382q

    Article  CAS  Google Scholar 

  • Kotelnikova NE, Panarin EF, Serimaa R et al (2000) Study of flax structure by WAXS, IR and 13C NMR spectroscopy, and SEM. Cellulosic pulps, fibres and materials Woodhead Publishing Ltd, pp 169–180

  • Krässig H, Schurz J, Steadman R et al (2002) Cellulose. Ullmann’s encyclopedia of industrial chemistry. Wiley online, Wiley-VCH Verlag GmbH & Co., pp 1–44

  • Lennholm H, Iversen T (1995) Estimation of cellulose I and II in cellulosic samples by principal component analysis of 13 C-CP/MAS-NMR-spectra. Holzforschung 49:119–126. doi:10.1515/hfsg.1995.49.2.119

    Article  CAS  Google Scholar 

  • Lennholm H, Larsson T, Iversen T (1994) Determination of cellulose I[alpha] and I[beta] in lignocellulosic materials. Carbohydr Res 261:119–131. doi:16/0008-6215(94)80011-1

    Article  CAS  Google Scholar 

  • Leppänen K, Andersson S, Torkkeli M et al (2009) Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering. Cellulose 16:999–1015. doi:10.1007/s10570-009-9298-9

    Article  Google Scholar 

  • Lorenzo-Seva U, Ferrando PJ (2006) FACTOR: a computer program to fit the exploratory factor analysis model. Behav Res Methods 38:88–91. doi:10.3758/BF03192753

    Article  Google Scholar 

  • Love GD, Snape CE, Jarvis MC, Morrison IM (1994) Determination of phenolic structures in flax fibre by solid-state 13C NMR. Phytochemistry 35:489–491. doi:10.1016/S0031-9422(00)94788-5

    Article  CAS  Google Scholar 

  • Macfarlane C, Warren CR, White DA, Adams MA (1999) A rapid and simple method for processing wood to crude cellulose for analysis of stable carbon isotopes in tree rings. Tree Physiol 19:831–835. doi:10.1093/treephys/19.12.831

    Article  CAS  Google Scholar 

  • Martins MA, Forato LA, Mattoso LH, Colnago LA (2006) A solid state 13C high resolution NMR study of raw and chemically treated sisal fibers. Carbohydr Polym 64:127–133

    Article  CAS  Google Scholar 

  • Maunu SL (2002) NMR studies of wood and wood product. Prog Nucl Magn Reson Spectrosc 40:151–174

    Article  CAS  Google Scholar 

  • Mazeau K (2011) On the external morphology of native cellulose microfibrils. Carbohydr Polym 84:524–532. doi:10.1016/j.carbpol.2010.12.016

    Article  CAS  Google Scholar 

  • McCusker LB, Von Dreele RB, Cox DE et al (1999) Rietveld refinement guidelines. J Appl Crystallogr 32:36–50. doi:10.1107/S0021889898009856

    Article  CAS  Google Scholar 

  • McDougall GJ (1993) Isolation and partial characterisation of the non-cellulosic polysaccharides of flax fibre. Carbohydr Res 241:227–236. doi:16/0008-6215(93)80109-R

    Article  CAS  Google Scholar 

  • Mikkonen KS, Stevanic JS, Joly C et al (2011) Composite films from spruce galactoglucomannans with microfibrillated spruce wood cellulose. Cellulose. doi:10.1007/s10570-011-9524-0

    Google Scholar 

  • Morvan C, Andème-Onzighi C, Girault R et al (2003) Building flax fibres: more than one brick in the walls. Plant Physiol Biochem 41:935–944. doi:10.1016/j.plaphy.2003.07.001

    Article  CAS  Google Scholar 

  • Müller M, Czihak C, Vogl G et al (1998) Direct observation of microfibril arrangement in a single native cellulose fiber by microbeam small-angle X-ray scattering. Macromolecules 31:3953–3957. doi:10.1021/ma980004c

    Article  Google Scholar 

  • Nabors M (2008) Biologie végétale: structures, fonctionnement, écologie et biotechnologies. Benjamin Cummings

  • Newman RH (1999a) Estimation of the relative proportions of cellulose Iα and Iβ in wood by carbon-13 NMR spectroscopy. Holzforschung 53:335–340

    Article  CAS  Google Scholar 

  • Newman RH (1999b) Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. Solid State Nucl Magn Reson 15:21–29

    Article  CAS  Google Scholar 

  • Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52. doi:10.1023/B:CELL.0000014768.28924.0c

    Article  CAS  Google Scholar 

  • Newman RH, Hemmingson JA (1990) Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44:351

    Article  CAS  Google Scholar 

  • Newman RH, Hemmingson JA (1995) Carbon-13 NMR distinction between categories of molecular order and disorder in cellulose. Cellulose 2:95–110

    Article  CAS  Google Scholar 

  • Newman RH, Davies LM, Harris PJ (1996) Solid-state 13C nuclear magnetic resonance characterization of cellulose in the cell walls of arabidopsis thaliana leaves. Plant Physiol 111:475–485

    CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose I beta from synchrotron x-ray and neutron fibre diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Paes S, Sun S, MacNaughtan W et al (2010) The glass transition and crystallization of ball milled cellulose. Cellulose 17:693–709. doi:10.1007/s10570-010-9425-7

    Article  CAS  Google Scholar 

  • Peng X, Ren J, Zhong L, Sun R (2011) Nanocomposite films based on Xylan-rich hemicelluloses and cellulose nanofibers with enhanced mechanical properties. Biomacromolecules 12:3321–3329. doi:10.1021/bm2008795

    Article  CAS  Google Scholar 

  • Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590

    Article  CAS  Google Scholar 

  • Preston RD (1974) The physical biology of plant cell walls. Chapman and Hall, London

    Google Scholar 

  • Renard CMGC, Voragen AGJ, Thibault JF, Pilnik W (1990) Studies on apple protopectin: I. Extraction of insoluble pectin by chemical means. Carbohydr Polym 12:9–25. doi:16/0144-8617(90)90101-W

    Article  CAS  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71. doi:10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  • Roland JC, Mosiniak M, Roland D (1995) Dynamique du positionnement de la cellulose dans les parois des fibres textiles du lin (Linum usitatissimum). Acta Bot Gallica 142:463–484

    Google Scholar 

  • Rondeau-Mouro C, Bizot H, Bertrand D (2011) Chemometric analyses of the 1H–13C cross-polarization build-up of celluloses NMR spectra: a novel approach for characterizing the cellulose crystallites. Carbohydr Polym 84:539–549. doi:10.1016/j.carbpol.2010.12.018

    Article  CAS  Google Scholar 

  • Sakthivel A, French AD, Eckhardt B, Young RA (1987) Application of the Rietveld crystal structure refinement method to cellotetraose. ACS symposium series, pp 68–87

  • Segal L, Creely JJ, Jr AEM, Conrad MC (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res J 29:786–794

    Google Scholar 

  • Snegireva A, Ageeva M, Amenitskii S et al (2010) Intrusive growth of sclerenchyma fibers. Russ J Plant Physiol 57:342–355. doi:10.1134/S1021443710030052

    Article  CAS  Google Scholar 

  • Stevanović T, Perrin D (2009) Chimie du bois. Presses polytechniques et universitaires romandes

  • Thygesen A, Oddershede J, Lilholt H et al (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576. doi:10.1007/s10570-005-9001-8

    Article  CAS  Google Scholar 

  • Vanderhart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state carbon-13 NMR. Macromolecules 17:1465–1472

    Article  CAS  Google Scholar 

  • Vincent JF (2000) A unified nomenclature for plant fibres for industrial use. Appl Compos Mater 7:269–271

    Article  CAS  Google Scholar 

  • Vonk CG (1973) Computerization of Ruland’s X-ray method for determination of the crystallinity in polymers. J Appl Crystallogr 6:148–152. doi:10.1107/S0021889873008332

    Article  CAS  Google Scholar 

  • Wardrop AB (1962) Cell wall organization in higher plants I. The primary wall. Botanical Rev 28:241–285. doi:10.1007/BF02860816

    Article  CAS  Google Scholar 

  • Weinkamer R, Fratzl P (2011) Mechanical adaptation of biological materials—the examples of bone and wood. Mater Sci Eng, C 31:1164–1173. doi:16/j.msec.2010.12.002

    Article  CAS  Google Scholar 

  • Whitney SE, Brigham JE, Darke AH et al (1995) In vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects. Plant J 8:491–504

    Article  CAS  Google Scholar 

  • Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129

    Article  CAS  Google Scholar 

  • Wise LE, Murphy M, d’ Addieco AA (1946) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J 122:35–43

    CAS  Google Scholar 

  • Yamashiki T, Matsui T, Saitoh M et al (1990) Characterisation of cellulose treated by the steam explosion method. Part 2: effect of treatment conditions on changes in morphology, degree of polymerisation, solubility in aqueous sodium hydroxide and supermolecular structure of soft wood pulp during steam explosion. Br Polym J 22:121–128

    Article  CAS  Google Scholar 

  • Zavadskii AE (2004) X-ray diffraction method of determining the degree of crystallinity of cellulose materials of different anisotropy. Fibre Chem 36:425–430. doi:10.1007/s10692-005-0031-7

    Article  CAS  Google Scholar 

  • Zhang Q, Brumer H, Ågren H, Tu Y (2011) The adsorption of xyloglucan on cellulose: effects of explicit water and side chain variation. Carbohydr Res 346:2595–2602. doi:10.1016/j.carres.2011.09.007

    Article  CAS  Google Scholar 

  • Zugenmaier P (2001) Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci 26:1341–1417

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Mr. Cyril Jouannic and Abdellatif Chachdi for their assistance with the extraction work. Mr. Franck Gascoin and Philippe Bazin are acknowledged for their help with, respectively, the amorphous cellulose preparation and the FTIR spectroscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoît Duchemin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duchemin, B., Thuault, A., Vicente, A. et al. Ultrastructure of cellulose crystallites in flax textile fibres. Cellulose 19, 1837–1854 (2012). https://doi.org/10.1007/s10570-012-9786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9786-1

Keywords

Navigation