Skip to main content

Advertisement

Log in

Radiation grafting of glycidyl methacrylate onto cotton gauzes for functionalization with cyclodextrins and elution of antimicrobial agents

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The aim of this work was to functionalize cotton gauzes with cyclodextrins in order to endow them with the ability to elute antimicrobial agents and to prevent infections. Gauzes were modified according to a two-steps approach: (1) pre-irradiation of the gauzes (Gammabeam) to graft glycidyl methacrylate (GMA), and (2) covalent binding of cyclodextrins (CDs) to the GMA-grafted gauzes. First the dependence of GMA grafting yield on the radiation dose (from 1 to 20 kGy) and the time of reaction was evaluated in detail. Anchorage of β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) was confirmed by FTIR, TGA, and 3-methylbenzoic acid sorption. Differently from pristine gauzes, CD-functionalized GMA-grafted gauzes were able to load an anionic antibiotic drug, specifically nalidixic acid, and to sustain the release for 6 h. Drug-loaded gauzes were tested in vitro against E. coli and the results prove the suitability of the functionalization approach to efficiently inhibit the growth of this microorganism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdel-Halim ES, Fouda MMG, Hamdy L, Abdel-Modhy FA, El-Sawy SM (2010) Incorporation of chlorohexidin diacetate into cotton fabrics grafted with glycidyl methacrylate and cyclodextrin. Carbohydr Polym 79:47–53

    Article  CAS  Google Scholar 

  • Alvarez-Lorenzo C, Bucio E, Burillo G, Concheiro A (2010) Medical devices modified at the surface by g-ray grafting for drug loading and delivery. Expert Opin Drug Del 7:173–185

    Article  CAS  Google Scholar 

  • Arseneau DF (1971) Competitive reaction in the thermal decomposition of cellulose. Can J Chem 49:632–638

    Article  CAS  Google Scholar 

  • Blackburn RS, Harvey A, Kettle LL, Manian AP, Payne JD, Russell SJ (2007) Sorption of chlorhexidine on cellulose: mechanism of binding and molecular recognition. J Phys Chem B 111:8775–8784

    Article  CAS  Google Scholar 

  • Bolton LL, Johnson CL, Van Rijswijk L (1991) Occlusive dressings: therapeutic agents and effects on drug delivery. Clin Dermatol 9:573–583

    Article  CAS  Google Scholar 

  • Brandt C, Hott U, Sohr D, Daschner F, Gastmeier P, Rüden H (2008) Operating room ventilation with laminar airflow shows no protective effect on the surgical site infection rate in orthopedic and abdominal surgery. Ann Surg 248:695–700

    Article  Google Scholar 

  • Buschmann HJ, Denter U, Knittel D, Schollmeyer E (1998) The use of cyclodextrins in textiles processes—an overview. J Text Inst 89:554–561

    Article  CAS  Google Scholar 

  • Chen-Yu JH, Eberhardt DM, Kincade DH (2007) Antibacterial and laundering properties of AMS and PHMP as finishing agents on fabric for health care workers’ uniforms. Cloth Text Res J 25:258–272

    Article  Google Scholar 

  • Contreras-García A, Bucio E, Concheiro A, Alvarez-Lorenzo C (2010) Polypropylene grafted with NIPAAm and APMA for creating hemocompatible surfaces that load/elute nalidixic acid. React Funct Polym 70:836–842

    Article  Google Scholar 

  • Contreras-García A, Bucio E, Brackman G, Coenye T, Concheiro A, Alvarez-Lorenzo C (2011) Biofilm inhibition and drug-eluting properties of novel DMAEMA-modified polyethylene and silicone rubber surfaces. Biofouling 27:123–135

    Article  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nanostructured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B 79:5–18

    Article  CAS  Google Scholar 

  • Desmet G, Takács E, Wojnárovits L, Borsa J (2011) Cellulose functionalization via high-energy irradiation-initiated grafting of glycidyl methacrylate and cyclodextrin immobilization. Radiat Phys Chem 80:1358–1362

    Article  CAS  Google Scholar 

  • Ershov BG (1998) Radiation-chemical degradation of cellulose and other saccharides. Russ Chem Rev 67:315–334

    Article  Google Scholar 

  • Fundueanu G, Constantin M, Mihai D, Bortolotti F, Cortesi R, Ascenzi P, Menegatti E (2003) Pullulan-cyclodextrin microspheres. A chromatographic approach for the evaluation of the drug-cyclodextrin interactions and the determination of the drug release profiles. J Chromatogr B 791:407–419

    Article  CAS  Google Scholar 

  • Gao Y, Cranston R (2008) Recent advances in antibacterial treatments of textile. Text Res J 78:60–72

    Article  CAS  Google Scholar 

  • Gopalakrishnan D, Aswini RK (2012) Antimicrobial finishes. http://www.fibre2fashion.com/industry-article/pdffiles/antimicrobial-finishes.pdf. Accessed Aug 2012

  • Gorensek M, Recelj P (2007) Nanosilver functionalized cotton fabric. Text Res J 77:138–141

    Article  CAS  Google Scholar 

  • Gouda M, Ibrahim NA (2008) New approach for imparting antibacterial function to cotton fabric. J Ind Text 37:327–339

    Article  CAS  Google Scholar 

  • Grover G, Kini SG (2006) Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. Eur J Med Chem 41:256–262

    Article  CAS  Google Scholar 

  • Hirotsu T (2006) Plasma graft polymerization of glycidyl methacrylate and cyclodextrin immobilization. Thin Solid Films 506:173–175

    Article  Google Scholar 

  • Hosoya T, Kawamoto H, Saka S (2007) Cellulos-hemicellulose and celluloselignin interactions in wood pyrolysis at gasification temperature. J Anal Appl Pyrol 80:118–125

    Article  CAS  Google Scholar 

  • Ibrahim NA, Gouda M, El-shafei AM, Abdel-Fatah OM (2007) Antimicrobial activity of cotton fabrics containing immobilized enzymes. J Appl Polym Sci 104:1754–1761

    Article  CAS  Google Scholar 

  • Ibrahim NA, Eid BM, Hashem MM, Refai R, El-Hossamy M (2010) Smart options for functional finishing of linen-containing fabrics. J Ind Text 39:233–265

    Article  CAS  Google Scholar 

  • Ibrahim NA, Eid BM, El-Batal H (2012) A novel approach for adding smart functionalities to celluosic fabrics. Carbohydr Polym 87:744–751

    Article  CAS  Google Scholar 

  • Le Thuaut P, Martel B, Crini G, Maschke U, Coqueret X, Morcellet M (2000) Grafting of cyclodextrins onto polypropylene nonwoven fabrics for the manufacture of reactive filters. I. Synthesis parameters. J Appl Polym Sci 77:2118–2125

    Article  Google Scholar 

  • Lee S, Lee MY, Park WH (2002) Thermal stabilization of poly(3-hydroxybutyrate) by poly(glycidyl methacrylate). J Appl Polym 83:2945–2952

    Article  CAS  Google Scholar 

  • Lina S, Hsua S, Sheub M (2010) Curve-fitting FTIR studies of loratadine/hydroxypropyl-β-cyclodextrin inclusion complex induced by co-grinding process. J Pharm Biomed 53:799–803

    Article  Google Scholar 

  • Loftsson T, Hreinssdóttir D, Másson M (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302:18–28

    Article  CAS  Google Scholar 

  • Martel B, Weltrowski M, Ruffin D, Morcellet M (2002) Polycarboxylic acids as crosslinking agents for grafting cyclodextrins onto cotton and wool fabrics: study of the process parameters. J Appl Polym Sci 83:1449–1456

    Article  CAS  Google Scholar 

  • Martínez-Martínez L, Pascual A, Jacoby GA (1998) Quinolone resistance from a transferable plasmid. Lancet 351:797–799

    Article  Google Scholar 

  • Mouës CM, van den Bemd GJCM, Heule F, Hovius SER (2007) Comparing conventional gauze therapy to vacuum-assisted closure wound therapy: a prospective randomised trial. J Plast Reconstr Aesthet Surg 60:672–681

    Article  Google Scholar 

  • Nava-Ortiz CAB, Alvarez-Lorenzo C, Bucio E, Concheiro A, Burillo G (2009a) Cyclodextrin-functionalized polyethylene and polypropylene as biocompatible materials for diclofenac delivery. Int J Pharm 382:183–191

    Article  CAS  Google Scholar 

  • Nava-Ortiz CAB, Burillo G, Bucio E, Alvarez-Lorenzo C (2009b) Modification of polyethylene films by radiation grafting of glycidyl methacrylate and immobilization of β-cyclodextrin. Radiat Phys Chem 78:19–24

    Article  CAS  Google Scholar 

  • Nava-Ortiz CAB, Burillo G, Concheiro A, Bucio E, Matthijs N, Nelis H, Coenye T, Alvarez-Lorenzo C (2010) Cyclodextrin-functionalized biomaterials loaded with miconazole prevent Candida albicans biofilm formation in vitro. Acta Biomater 6:1398–1404

    Article  CAS  Google Scholar 

  • Perez D, Bramkamp M, Exe C, von Ruden C, Ziegler A (2010) Modern wound care for the poor: a randomized clinical trial comparing the vacuum system with conventional saline-soaked gauze dressings. Am J Surg 199:14–20

    Article  Google Scholar 

  • Qian L, Guan Y, Ziaee Z, He B, Zheng A, Xiao H (2009) Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymer included with antibiotics. Cellulose 16:309–317

    Article  CAS  Google Scholar 

  • Ren X, Kou L, Liang J, Worley SD, Tzou Y-M, Huang TS (2008) Antimicrobial efficacy and light stability of N-halamine siloxanes bound to cotton. Cellulose 15:593–598

    Article  CAS  Google Scholar 

  • Rosa dos Santos JF, Couceiro R, Concheiro A, Torres-Labandeira JJ, Alvarez-Lorenzo C (2008) Poly(hydroxyethyl methacrylate-co-methacrylated-β-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties. Acta Biomater 4:745–755

    Article  Google Scholar 

  • Rosa dos Santos JF, Alvarez-Lorenzo C, Silva M, Balsa L, Couceiro J, Torres-Labandeira JJ, Concheiro A (2009) Soft contact lenses functionalized with pendant cyclodextrins for controlled drug delivery. Biomaterials 30:1348–1355

    Article  CAS  Google Scholar 

  • Scott CP, Higham PA (2003) Antibiotic bone cement for the treatment of pseudomonas aeruginosa in joint arthroplasty: comparison of tobramycin and gentamicin-loaded cements. J Biomed Mater Res B 64:94–98

    Article  Google Scholar 

  • Sekine A, Seko N, Tamada M, Suzuki Y (2010) Biodegradable metal adsorbent synthesized by graft polymerization onto nonwoven cotton fabric. Radiat Phys Chem 79:16–21

    Article  CAS  Google Scholar 

  • Shehatta IS, Ibrahim MS, Sultan MR (2002) The antimicrobial nalidixic acid as a probe for molecular recognition of α- and β-cyclodextrins. Can J Chem 80:1313–1320

    Article  CAS  Google Scholar 

  • Shen DK, Gua S, Bridgwater AV (2010) The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr Polym 83:39–45

    Article  Google Scholar 

  • Shinohara T, Yamashitac Y, Satoh K, Mikami K, Yamauchi Y, Hoshino S, Noritomi A, Maekawa T (2008) Prospective evaluation of occlusive hydrocolloid dressing versus conventional gauze dressing regarding the healing effect after abdominal operations: randomized controlled trial. Asian J Surg 31:1–5

    Article  Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753

    Article  CAS  Google Scholar 

  • Szejtli J (2003) Cyclodextrins in the textile industry. Starch 55:191–196

    Article  CAS  Google Scholar 

  • Takács E, Wojnarovits L, Borsa J, Papp J, Hargittai P, Korecz L (2005) Modification of cotton-cellulose by preirradiation grafting. Nucl Instrum Meth B 236:259–265

    Article  Google Scholar 

  • Wang NX, von Recum HA (2011) Affinity-based drug delivery. Macromol Biosci 11:321–332

    Article  CAS  Google Scholar 

  • Wang Y-P, Wang M-C, Chen Y-C, Leu Y-S, Lin H-C, Lee K-S (2011) The effects of vaseline gauze strip, merocel, and nasopore on the formation of synechiae and excessive granulation tissue in the middle meatus and the incidence of major postoperative bleeding after endoscopic sinus surgery. J Chin Med Assoc 74:16–21

    Article  Google Scholar 

  • Xu L, Wu F, Yuan W, Jin T (2008) Controlled-release implant system formulated using biodegradable hemostatic gauze as scaffold. Int J Pharm 355:249–258

    Article  CAS  Google Scholar 

  • Zilberman M, Elsner JJ (2008) Antibiotic-eluting medical devices for various applications. J Control Release 130:202–215

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MICINN (SAF2011-22771), Xunta de Galicia (10CSA203013PR) and FEDER (Spain), and DGAPA-UNAM Grant IN202311 and CONACYT Project 174378 (Mexico). The authors thank to F. García and B. Leal from ICN-UNAM for technical assistance, and to B. Magariños of USC for the help with the microbiological tests. Authors also thank “Red iberoamericana de nuevos materiales para el diseño de sistemas avanzados de liberación de fármacos en enfermedades de alto impacto socioeconómico” (RIMADEL) of the Ibero-American Programme for Science, Technology and Development (CYTED).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Alvarez-Lorenzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiriart-Ramírez, E., Contreras-García, A., Garcia-Fernandez, M.J. et al. Radiation grafting of glycidyl methacrylate onto cotton gauzes for functionalization with cyclodextrins and elution of antimicrobial agents. Cellulose 19, 2165–2177 (2012). https://doi.org/10.1007/s10570-012-9782-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9782-5

Keywords

Navigation