Skip to main content
Log in

Synthesis of (zinc(II) phthalocyanine)-containing cellulose derivative using phthalocyanine-ring formation reaction

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

2,3-Di-O-myristyl-6-O-(zinc(II) phthalocyaninyl) cellulose (5) was synthesized from cellulose (1) by five reaction steps via 6-O-(3′,4′-dicyanophenyl)-2,3-di-O-myristyl cellulose (4). The key reaction was phthalocyanine-ring formation on a cellulose backbone, that is, the reaction of compound 4 with o-phthalodinitrile in the presence of hexamethyldisilazane and zinc acetate in DMF afforded to compound 5 in 35.4 % yield. Consequently, the degree of substitution with phthalocyanine moieties of compound 5 was 0.38. The LB monolayer film of compound 5 on an indium tin oxide (ITO) electrode was found to show photocurrent generation performance at 680 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Allcock HR, Neenan TX (1986) Synthesis of polyphosphazenes bearing covalently linked copper phthalocyanine units. Macromolecules 19:1495–1501. doi:10.1021/ma00160a001

    Article  CAS  Google Scholar 

  • Álvarez-Micó X, Calvete MJF, Hanack M, Ziegler T (2007) Expeditious synthesis of glycosylated phthalocyanines. Synthesis 14:2186–2192. doi:10.1055/s-2007-983753

    Google Scholar 

  • Aoki D, Teramoto Y, Nishio Y (2007) SH-containing cellulose acetate derivatives: preparation and characterization as a shape memory-recovery material. Biomacromolecules 8:3749–3757. doi:10.1021/bm7006828

    Article  CAS  Google Scholar 

  • Bilgin A, Yağci Ç, Mendi A, Yıldız U (2008) Synthesis and characterization of new monomeric and polymeric phthalocyanines. J Appl Polym Sci 110:2115–2126. doi:10.1002/app.28774

    Article  CAS  Google Scholar 

  • Camacho Gómez JA, Erler UW, Klemm DO (1996) 4-Methoxy substituted trityl groups in 6-O protection of cellulose: homogeneous synthesis, characterization, detritylation. Macromol Chem Phys 197:953–964

    Article  Google Scholar 

  • Chen S-L, Huang X-J, Xu Z-K (2011) Functionalization of cellulose nanofiber mats with phthalocyanine for decoloration of reactive dye wastewater. Cellulose 18:1295–1303. doi:10.1007/s10570-011-9572-5

    Article  CAS  Google Scholar 

  • Choi C-F, Huang J-D, Lo P-C, Fong W-P, Ng DKP (2008) Glycosylated zinc(II) phthalocyanines as efficient photosensitizers for photodynamic therapy. Synthesis, photophysical properties and in vitro photodynamic activity. Org Biomol Chem 6:2173–2181. doi:10.1039/b802212g

    Article  CAS  Google Scholar 

  • Cook MJ, Chambrier I (2003) Phthalocyanine thin films: deposition and structural studies. In: Kadish KM, Smith KM, Guilard R (eds) The porphyrin handbook, vol 17. Elsevier Science, USA, pp 62–103

    Google Scholar 

  • Cooper GK, Sandberg KR, Hinck JF (1981) Trimethylsilyl cellulose as precursor to regenerated cellulose fiber. J Appl Polym Sci 26:3827–3836. doi:10.1002/app.1981.070261129

    Article  CAS  Google Scholar 

  • Deng X (2011) Hexamethyldisilazane. Synlett 6:881–882. doi:10.1055/s-0030-1259911

    Article  Google Scholar 

  • Erdem SS, Nesterova IV, Soper SA, Hammer RP (2008) Solid-phase synthesis of asymmetrically substituted “AB3-Type” phthalocyanines. J Org Chem 73:5003–5007. doi:10.1021/jo800536v

    Article  CAS  Google Scholar 

  • Hayatsu H (1992) Cellulose bearing covalently linked copper phthalocyanine trisulphonate as an adsorbent selective for polycyclic compounds and its use in studies of environmental mutagens and carcinogens. J Chromatogr 597:37–56. doi:10.1016/0021-9673(92)80095-C

    Article  CAS  Google Scholar 

  • Huang X, Zhao F, Li Z, Huang L, Tang Y, Zhang F, Tung C-H (2007) A novel self-aggregates of phthalocyanine based on Zn–O coordination. Chem Lett 36:108–109. doi:10.1246/cl.2007.108

    Article  CAS  Google Scholar 

  • Karakawa M, Chikamatsu M, Yoshida Y, Azumi R, Yase K, Nakamoto C (2007) Organic memory device based on carbazole-substituted cellulose. Macrolmol Rapid Commun 28:1479–1484. doi:10.1002/marc.200700186

    Article  CAS  Google Scholar 

  • Kasai W, Kuga S, Magoshi J, Kondo T (2005) Compression behavior of Langmuir–Blodgett monolayers of regioselectively substituted cellulose ethers with long alkyl side chains. Langmuir 21:2323–2329. doi:10.1021/la047323j

    Article  CAS  Google Scholar 

  • Leznoff CC, Hall TW (1982) The synthesis of a soluble, unsymmetrical phthalocyanine on a polymer support. Tetrahedron Lett 23:3023–3026

    Article  CAS  Google Scholar 

  • Leznoff CC, Svirskaya PI, Khouw B, Cerny RL, Seymour P, Lever ABP (1991) Synthesis of monometalated and unsymmetrically substituted binuclear phthalocyanines and a pentanuclear phthalocyanine by solution and polymer support methods. J Org Chem 56:82–90

    Article  CAS  Google Scholar 

  • Mack J, Stillman MJ (1995) Band deconvolution analysis of the absorption and magnetic circular dichroism spectral data of ZnPc(-2) recorded at cryogenic temperatures. J Phys Chem 99:7935–7945. doi:10.1021/j100020a015

    Article  CAS  Google Scholar 

  • Mori S, Nagata M, Nakahata Y, Yasuta K, Goto R, Kimura M, Taya M (2010) Enhancement of incident photon-to-current conversion efficiency for phthalocyanine-sensitized solar cells by 3D molecular structuralization. J Am Chem Soc 132:4054–4055. doi:10.1021/ja9109677

    Article  CAS  Google Scholar 

  • Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevery L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J Am Chem Soc 123:1613–1624. doi:10.1021/ja003299u

    Article  CAS  Google Scholar 

  • Okada Y, Fukuoka F, Morita Z (1998) Environmental effects of oxygen on the fading of monochlorotriazinyl reactive dyes on cotton fabrics. Dyes Pigm 37:47–64

    Article  CAS  Google Scholar 

  • Sakakibara K, Nakatsubo F (2008) Effect of fullerene on photocurrent performance of 6-O-porphyrin-2,3-di-O-stearoylcellulose Langmuir–Blodgett films. Macromol Chem Phys 209:1274–1281. doi:10.1002/macp.200800027

    Article  CAS  Google Scholar 

  • Sakakibara K, Nakatsubo F (2010) Effect of central metals in the porphyrin ring on photocurrent performance of cellulose Langmuir-Blodgett films. Macromol Chem Phys 211:2425–2433. doi:10.1002/macp.201000257

    Article  CAS  Google Scholar 

  • Sakakibara K, Ogawa Y, Nakatsubo F (2007) First cellulose Langmuir–Blodgett films towards photocurrent generation systems. Macromol Rapid Commun 28:1270–1275. doi:10.1002/marc.200700130

    Article  CAS  Google Scholar 

  • Seoudi R, El-Bahy GS, El Sayed ZA (2005) FTIR, TGA and DC electrical conductivity studies of phthalocyanine and its complexes. J Mol Struct 753:119–126. doi:10.1016/j.molstruc.2005.06.003

    Article  CAS  Google Scholar 

  • Uchida H, Tanaka H, Yoshiyama H, Reddy PY, Nakamura S, Toru T (2002) Novel synthesis of phthalocyanines from phthalonitriles under mild conditions. Synlett 10:1649–1652

    Google Scholar 

  • Wang C, Tan H, Dong Y, Shao Z (2006) Trimethylsilyl hydroxypropyl cellulose: preparation, properties and as precursors to graft copolymerization of ε-caprolactone. React Funct Polym 66:1165–1173. doi:10.1016/j.reactfunctpolym.2006.02.006

    Article  CAS  Google Scholar 

  • Wondraczek H, Kotiaho A, Fardim P, Heinze T (2011) Photoactive polysaccharides. Carbohydr Polym 83:1048–1061. doi:10.1016/j.carbpol.2010.10.014

    Article  CAS  Google Scholar 

  • Zhang Y, Niu Y, Xu R, Wang G, Jiang Z (2006) Synthesis and characterization of poly(aryl ether sulfone)s with metallophthalocyanine pendant unit. J Appl Polym Sci 102:3457–3461. doi:10.1002/app.24498

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuko Saito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, Y., Takano, T., Sakakibara, K. et al. Synthesis of (zinc(II) phthalocyanine)-containing cellulose derivative using phthalocyanine-ring formation reaction. Cellulose 19, 2105–2114 (2012). https://doi.org/10.1007/s10570-012-9772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9772-7

Keywords

Navigation