, Volume 19, Issue 6, pp 2069–2079 | Cite as

Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation

  • Rajalaxmi Dash
  • Thomas Elder
  • Arthur J. Ragauskas
Original Paper


This study demonstrates regioselective oxidation of cellulose nanowhiskers using 2.80–10.02 mmols of sodium periodate per 5 g of whiskers followed by grafting with methyl and butyl amines through a Schiff base reaction to obtain their amine derivatives in 80–90 % yield. We found a corresponding increase in carbonyl content (0.06–0.14 mmols/g) of the dialdehyde cellulose nanowhiskers with the increase in oxidant as measured by titrimetric analysis and this was further evidenced by FT-IR spectroscopy. Grafting of amine compounds to the oxidized cellulose nanowhiskers resulted in their amine derivatives, which are found to be partially soluble in DMSO. Therefore, the reduction reaction between amines and carbonyl groups was confirmed through 13C NMR spectra, which was also supported by copper titration, XPS, and FT-IR spectroscopy. Morphological integrity and crystallinity of the nanowhiskers was maintained after the chemical modification as studied by AFM and solid-state 13C NMR, respectively.


Amine derivative Cellulose nanowhiskers Dialdehyde cellulose nanowhiskers Periodate oxidation 



The authors thank DOE (DE-EE0003144) for the support of this study.


  1. Alonso D, Gimeno M, Olayo R, Vazquez-Torres H, Sepulveda-Sanchez JD, Shirai K (2009) Cross-linking chitosan into UV-irradiated cellulose fibers for the preparation of antimicrobial-finished textiles. Carbohydr Polym 77(3):536–543. doi: 10.1016/j.carbpol.2009.01.027 CrossRefGoogle Scholar
  2. Angellier H, Molina-Boisseau S, Belgacem MN, Dufresne A (2005) Surface chemical modification of waxy maize starch nanocrystals. Langmuir 21(6):2425–2433. doi: 10.1021/la047530j CrossRefGoogle Scholar
  3. Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17(1):21–27. doi: 10.1021/la001070m CrossRefGoogle Scholar
  4. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626. doi: 10.1021/bm0493685 CrossRefGoogle Scholar
  5. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054. doi: 10.1021/bm049300p CrossRefGoogle Scholar
  6. Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180. doi: 10.1007/s10570-006-9061-4 CrossRefGoogle Scholar
  7. Cassano R, Trombino S, Ferrarelli T, Muzzalupo R, Tavano L, Picci N (2009) Synthesis and antibacterial activity evaluation of a novel cotton fiber (Gossypium barbadense) ampicillin derivative. Carbohydr Polym 78(3):639–641. doi: 10.1016/j.carbpol.2009.05.030 CrossRefGoogle Scholar
  8. Cetin NS, Tingaut P, Ozmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9(10):997–1003. doi: 10.1002/mabi.200900073 CrossRefGoogle Scholar
  9. Dash R, Ragauskas AJ (2012) Synthesis of a novel cellulose nanowhisker-based drug delivery system. RSC Adv 2(8):3403–3409. doi: 10.1039/c2ra01071b CrossRefGoogle Scholar
  10. Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Can J Chem 86(6):484–494. doi: 10.1139/v07-152 CrossRefGoogle Scholar
  11. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315. doi: 10.1039/c0sm00142b CrossRefGoogle Scholar
  12. El-Tahlawy KF, El-Bendary MA, Elhendawy AG, Hudson SM (2005) The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydr Polym 60(4):421–430. doi: 10.1016/j.carbpol.2005.02.019 CrossRefGoogle Scholar
  13. Fujisawa S, Saito T, Isogai A (2012) Nano-dispersion of TEMPO-oxidized cellulose/aliphatic amine salts in isopropyl alcohol. Cellulose 19(2):459–466. doi: 10.1007/s10570-011-9648-2 CrossRefGoogle Scholar
  14. Gousse C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651. doi: 10.1016/s0032-3861(02)00051-4 CrossRefGoogle Scholar
  15. Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687. doi: 10.1007/s10570-006-9075-y CrossRefGoogle Scholar
  16. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. doi: 10.1021/cr900339w CrossRefGoogle Scholar
  17. Harrisson S, Drisko GL, Malmstrom E, Hult A, Wooley KL (2011) Hybrid rigid/soft and biologic/synthetic materials: polymers grafted onto cellulose microcrystals. Biomacromolecules 12(4):1214–1223. doi: 10.1021/bm101506j CrossRefGoogle Scholar
  18. Hasani M, Cranston ED, Gray DG (2009) Cationic surface functionalization of cellulose nanocrystals. Abstracts of Papers of the American Chemical Society 237Google Scholar
  19. Huang JG, Ichinose I, Kunitake T (2006) Biomolecular modification of hierarchical cellulose fibers through titania nanocoating. Angew Chem Int Ed Engl 45(18):2883–2886. doi: 10.1002/anie.200503867 CrossRefGoogle Scholar
  20. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364. doi: 10.1016/j.carbpol.2007.05.040 CrossRefGoogle Scholar
  21. Johnson R, Zink-Sharp A, Glasser W (2011) Preparation and characterization of hydrophobic derivatives of TEMPO-oxidized nanocelluloses. Cellulose 18(6):1599–1609. doi: 10.1007/s10570-011-9579-y CrossRefGoogle Scholar
  22. Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1(3):488–492. doi: 10.1021/bm0000337 CrossRefGoogle Scholar
  23. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50(24):5438–5466. doi: 10.1002/anie.201001273 CrossRefGoogle Scholar
  24. Kristiansen KA, Potthast A, Christensen BE (2010) Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr Res 345(10):1264–1271. doi: 10.1016/j.carres.2010.02.011 CrossRefGoogle Scholar
  25. Larsson PT, Hult EL, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS C-13-NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15(1):31–40. doi: 10.1016/s0926-2040(99)00044-2 CrossRefGoogle Scholar
  26. Lima MMD, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787. doi: 10.1002/marc.200300268 CrossRefGoogle Scholar
  27. Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8):2997–3006. doi: 10.1021/bm200613y CrossRefGoogle Scholar
  28. Montanari S, Rountani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38(5):1665–1671. doi: 10.1021/ma048396c CrossRefGoogle Scholar
  29. Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286. doi: 10.1021/la900452a CrossRefGoogle Scholar
  30. Nair KG, Dufresne A, Gandini A, Belgacem MN (2003) Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. effect of chemical modification of chitin whiskers. Biomacromolecules 4(6):1835–1842. doi: 10.1021/bm030058g CrossRefGoogle Scholar
  31. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnology for Biofuels 3. doi: 10.1186/1754-6834-3-10
  32. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206. doi: 10.1002/cjce.20554 CrossRefGoogle Scholar
  33. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization. Biomacromolecules 11(3):674–681. doi: 10.1021/bm901254n CrossRefGoogle Scholar
  34. Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 61(6):662–667. doi: 10.1515/hf.2007.099 CrossRefGoogle Scholar
  35. Ringot C, Sol V, Barriere M, Saad N, Bressollier P, Granet R, Couleaud P, Frochot C, Krausz P (2011) Triazinyl porphyrin-based photoactive cotton fabrics: preparation, characterization, and antibacterial activity. Biomacromolecules 12(5):1716–1723. doi: 10.1021/bm200082d CrossRefGoogle Scholar
  36. Rohrling J, Potthast A, Rosenau T, Lange T, Borgards A, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. validation and applications. Biomacromolecules 3(5):969–975. doi: 10.1021/bm020030p CrossRefGoogle Scholar
  37. Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2(2):111–127. doi: 10.1007/bf00816384 CrossRefGoogle Scholar
  38. Siqueira G, Bras J, Dufresne A (2009) Cellulose Whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432. doi: 10.1021/bm801193d CrossRefGoogle Scholar
  39. Yuan HH, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7(3):696–700. doi: 10.1021/bm050828j CrossRefGoogle Scholar
  40. Zhang J, Jiang N, Dang Z, Elder TJ, Ragauskas AJ (2008) Oxidation and sulfonation of cellulosics. Cellulose 15(3):489–496. doi: 10.1007/s10570-007-9193-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Rajalaxmi Dash
    • 1
  • Thomas Elder
    • 2
  • Arthur J. Ragauskas
    • 1
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.USDA-Forest ServicePinevilleUSA

Personalised recommendations