Skip to main content
Log in

In situ synthesis of gold nanoparticles using fique natural fibers as template

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Gold nanoparticles were synthesized on the surface of natural fique fibers extracted from the leaves of Furcraea spp., a plant native to the Andean mountains in Colombia. Fique fibers have a low density, are biodegradable, flexible, highly resistant to wear and exhibit excellent thermal degradation making them promising materials for the textile and packing industries as well as fillers for fiber-reinforced composites. Fique fiber surface was rendered positive using a cationizing agent 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHTAC) under strong alkaline conditions. Cationic fique fibers were impregnated with an anionic gold complex that was further reduced to generate gold nanoparticles onto the fibers surface. The influence of CHTAC reaction times and NaOH:CHTAC molar ratios were examined. It was found that increasing the NaOH:CHTAC molar ratio had a negligible effect on nanoparticle size, while the surface coverage density was positively influenced. We hypothesize that the number of positive charges on the fiber surface is the key factor behind this observation. UV–Vis diffuse reflectance spectroscopy; mechanical tests and field emission scanning electron microscopy were used to characterize the modified fibers and the resulting nanoparticles. The proposed method opens a new path for the development of functional natural renewable substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Batra SK (2006) Other long vegetable fibers: abaca, banana, sisal, henequen, flax, ramie, hemp, sunn, and coir. In: Lewin M (ed) Handbook of fiber chemistry, 3rd edn. CRC Press, Boca Raton, pp 454–515

  • Cai J, Kimura S, Wada M, Kuga S (2008) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10(1):87–94

    Article  Google Scholar 

  • Chen H, Lee J, Kang N, Koh K, Lee J (2011) A surface plasmon resonance study on the optical properties of gold nanoparticles on thin gold films. Microchim Acta 172:489–494

    Article  CAS  Google Scholar 

  • Dong H, Hinestroza JP (2009) Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. Appl Mater Interfaces 1(4):797–803

    Article  CAS  Google Scholar 

  • Gañan P, Mondragon I (2004) Influence of compatibilization treatments on the mechanical properties of fique fiber reinforced polypropylene composites. Int J Polym Mater 53:997–1013

    Article  Google Scholar 

  • Gañán P, Mondragón I (2002) Surface modification of fique fibers. Effect on their physico-mechanical properties. Polym Compos 23(3):383–394

    Article  Google Scholar 

  • Hadad L, Perkas N, Gofer Y, Calderon-Moreno J, Ghule A, Gedanken A (2007) Sonochemical deposition of silver nanoparticles on wool fibers. J Appl Polym Sci 104:1732–1737 (and references therein)

    Google Scholar 

  • Hashem M, Hauser P, Smith B (2003) Reaction efficiency for cellulose cationization using 3-chloro-2-hydroxypropyl trimethyl ammonium chloride. Textile Res J 73(11):1017–1023

    Article  CAS  Google Scholar 

  • He J, Kunitake T (2004) Preparation and thermal stability of gold nanoparticles in silk-templated porous filaments of Titania and zirconia. Chem Mater 16(13):2656–2661

    Article  CAS  Google Scholar 

  • He J, Kunitake T, Nakao A (2003) Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem Mater 15(23):4401–4406

    Article  CAS  Google Scholar 

  • Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706

    Article  CAS  Google Scholar 

  • Hyde K, Rusa M, Hinestroza JP (2005) Layer-by-layer deposition of polyelectrolyte nanolayers on natural fibers. Nanotechnology 16(7):S422–S428

    Article  Google Scholar 

  • Hyde K, Dong H, Hinestroza JP (2007) Effect of surface cationization on the conformal deposition of polyelectrolytes over cotton fibers. Cellulose 14(6):615–623

    Article  CAS  Google Scholar 

  • Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111(6):3736

    Article  CAS  Google Scholar 

  • Kim K, Lee HB, Lee JW, Park HK, Shin KS (2008) Self-assembly of poly(ethylenimine)-capped Au nanoparticles at a toluene-water interface for efficient surface-enhanced Raman scattering. Langmuir 24(14):7178–7183

    Article  CAS  Google Scholar 

  • Kumar A, Pushparaj VL, Murugesan S, Viswanathan G, Nalamasu R, Linhardt RJ, Nalamasu O, Ajayan PM (2006) Synthesis of silica gold nanocomposites and their porous nanoparticles by an in situ approach. Langmuir 22(21):8631–8634

    Article  CAS  Google Scholar 

  • Li SM, Jia N, Maa MG, Zhang Z, Liu QH, Sun RC (2011) Cellulose-silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr Polym 86(2):441–447

    Article  CAS  Google Scholar 

  • Liz-Marzan L (2004) Nanometals: formation and color. Mater Today 7:26–31

    Article  CAS  Google Scholar 

  • Mann CC (2006) 1491 New revelations of the Americas before Columbus. Vintage Books, USA

    Google Scholar 

  • Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers and biocomposites. CRC Press, Boca Raton

    Book  Google Scholar 

  • Padalkar S, Capadona JR, Rowan SJ, Weder C, Won YH, Stanciu LA, Moon RJ (2010) Natural biopolymers: novel templates for the synthesis of nanostructures. Langmuir 26(11):8497–8502

    Article  CAS  Google Scholar 

  • Philip D (2008) Synthesis and spectroscopic characterization of gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 71(1):80–85

    Article  Google Scholar 

  • Rijswijk K, Brouwer WD, Beukers A (2001) Application of natural fiber composites in the development of rural societies. FAO organization

  • Salama TM, Shido T, Ohnishi R, Ichikawa M (1996) EXAFS/XANES, XRD, and UV–Vis characterization of intrazeolitic gold(I) prepared by monolayer dispersion of AuCl3 inside Na-Y zeolite. J Phys Chem 100:3688–3694

    Article  CAS  Google Scholar 

  • Schwartzberg AM, Zhang JZ (2006) Surface-enhanced Raman scattering (SERS). In: Schwarz JA, Contescu C, Putyera K (ed) Dekkar encyclopedia of nanoscience and nanotechnology, Vol 6. Marcel Dekkar, Inc. New York

  • Shelley EJ, Ryan D, Johnson SR, Couillard M, Fitzmaurice D, Nellist PD, Chen Y, Palmer RE, Preece JA (2002) Dialkyl sulfides: novel passivating agents for gold nanoparticles. Langmuir 18(5):1791–1795

    Article  CAS  Google Scholar 

  • Srisombat LO, Park JS, Zhang S, Lee TR (2008) Preparation, characterization, and chemical stability of gold nanoparticles coated with mono-, bis-, and tris-chelating alkanethiols. Langmuir 24(15):7750–7754

    Article  CAS  Google Scholar 

  • Templeton AC, Wuelfing P, Murray R (2000) Monolayer-protected cluster molecules. Acc Chem Res 33(1):27–36

    Article  CAS  Google Scholar 

  • Wang X, Mitchell DR, Prince K, Atanacio AJ, Caruso RA (2008) Gold nanoparticle incorporation into porous Titania networks using an agarose gel templating technique for photocatalytic applications. Chem Mater 20(12):3917–3929

    Article  CAS  Google Scholar 

  • Yang C, Gao P, Xu B (2009) Investigations of a controllable nanoscale coating on natural fiber system: effects of charge and bonding on the mechanical properties of textiles. J Mater Sci 44(2):469–476

    Article  CAS  Google Scholar 

  • Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331(2):251–262

    Article  CAS  Google Scholar 

  • Zhu C, Xue J, He J (2009) Controlled in situ synthesis of silver nanoparticles in natural cellulose fibers toward highly efficient antimicrobial materials. J Nanosci Nanotechnol 9(5):3067–3074

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financed by Universidad Industrial de Santander and Colciencias (Young Researchers Program 2011). We thank Professor Cesar Sierra from Universidad Nacional de Colombia for residual weight percentage analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Combariza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castellanos, L.J., Blanco-Tirado, C., Hinestroza, J.P. et al. In situ synthesis of gold nanoparticles using fique natural fibers as template. Cellulose 19, 1933–1943 (2012). https://doi.org/10.1007/s10570-012-9763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9763-8

Keywords

Navigation