Bamboo fiber and its reinforced composites: structure and properties

Abstract

Natural plant fibers have unequivocally contributed economic prosperity and sustainability in our daily lives. Particularly, bamboo fibers have been used for industrial applications as diverse as textiles, paper, and construction. Recent renewed interest in bamboo fiber (BF) is primarily targeted for the replacement or reduction in use of glass fiber from non-renewable resources. In this review, various mechanical, chemical, and biological approaches for the preparation and separation of macro-, micro-, and nano-sized fibers from raw bamboo are summarized. The differences in the mechanical, thermal, and other properties of fibers from different materials are linked to their size, aspect ratio, surface charge and groups, and their function in nature. Biocomposites made of BF are considered to be green, environmentally responsible eco-products. Different processing parameters such as fiber extraction, surface modification, and synthesis of the composites affect the characteristics of composites. Fiber length, orientation, concentration, dispersion, aspect ratio, selection of matrix, and chemistry of the matrix must all be considered during fabrication in order to achieve desirable functionalities and performance. Because of the hydrophilic nature of BF, different methods may be adopted to improve interfacial surface adhesion. A better understanding of the fiber structure and characteristics that influence composite performance could lead to the development of additives, coatings, binders, or sizing suitable for natural fiber and a variety of polymeric matrices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Agarwal BD, Broutman LJ, Chandrashekhara K (2006) Analysis and performance of fiber composites, 3rd edn. Wiley, New York

    Google Scholar 

  2. Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimizu H (1997) Fiber texture and mechanical graded structure of bamboo. Compos B Eng 28:13–20

    Article  Google Scholar 

  3. Bao L, Chen Y, Zhou W, Wu Y, Huang Y (2011) Bamboo fibers @ poly(ethylene glycol)-reinforced poly(butylene succinate) biocomposites. J Appl Polym Sci 122:2456–2466

    Article  CAS  Google Scholar 

  4. Bhardwaj R, Mohanty AK, Drzal LT, Pourboghrat F, Misra M (2006) Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biomacromolecules 7:2044–2051

    Article  CAS  Google Scholar 

  5. Bismarck A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers and biocomposites. CRC Press, USA, pp 36–108

    Google Scholar 

  6. Bledzki AK, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336

    Article  CAS  Google Scholar 

  7. Cai G, Wang J, Nie Y, Tian X, Zhu X, Zhou X (2011) Effects of toughening agents on the behaviors of bamboo plastic composites. Polym Compos 32:1945–1952

    Article  CAS  Google Scholar 

  8. Chang F, Lee S-H, Toba K, Nagatani A, Endo T (2012) Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Sci Technol 46:393–403

    Article  CAS  Google Scholar 

  9. Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK (2011a) Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. J Appl Polym Sci 119:1619–1626

    Article  CAS  Google Scholar 

  10. Chattopadhyay SK, Singh S, Pramanik N, Niyogi UK, Khandal RK, Uppaluri R, Ghoshal AK (2011b) Biodegradability studies on natural fibers reinforced polypropylene composites. J Appl Polym Sci 121:2226–2232

    Article  CAS  Google Scholar 

  11. Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446

    Article  CAS  Google Scholar 

  12. Chen X, Guo Q, Mi Y (1998) Bamboo fiber-reinforced polypropylene composites: a study of the mechanical properties. J Appl Polym Sci 69:1891–1899

    Article  CAS  Google Scholar 

  13. Chen H, Miao M, Ding X (2009) Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Compos Part A-Appl S 40:2013–2019

    Article  Google Scholar 

  14. Coats ER, Loge FJ, Wolcott MP, Englund K, McDonald AG (2008) Production of natural fiber reinforced thermoplastic composites through the use of PHB-rich biomass. Bioresource Technol 99:2680–2686

    Article  CAS  Google Scholar 

  15. Das M, Chakraborty D (2006a) Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J Appl Polym Sci 102:5050–5056

    Article  CAS  Google Scholar 

  16. Das M, Chakraborty D (2006b) Influence of mercerization on the dynamic mechanical properties of bamboo, a natural lignocellulosic composite. Ind Eng Chem Res 45:6489–6492

    Article  CAS  Google Scholar 

  17. Das M, Chakraborty D (2007) Role of mercerization of the bamboo strips on the impact properties and morphology of unidirectional bamboo strips-novolac composites. Polym Compos 28:57–60

    Article  CAS  Google Scholar 

  18. Das M, Chakraborty D (2008) Evaluation of improvement of physical and mechanical properties of bamboo fibers due to alkali treatment. J Appl Polym Sci 107:522–527

    Article  CAS  Google Scholar 

  19. Das M, Chakraborty D (2009a) The effect of alkalization and fiber loading on the mechanical properties of bamboo fiber composites, Part 1:—polyester resin matrix. J Appl Polym Sci 112:489–495

    Article  CAS  Google Scholar 

  20. Das M, Chakraborty D (2009b) Effects of alkalization and fiber loading on the mechanical properties and morphology of bamboo fiber composites. II. Resol matrix. J Appl Polym Sci 112:447–453

    Article  CAS  Google Scholar 

  21. Das M, Pal A, Chakraborty D (2006) Effects of mercerization of bamboo strips on mechanical properties of unidirectional bamboo-novolac composites. J Appl Polym Sci 100:238–244

    Article  CAS  Google Scholar 

  22. Das M, Prasad VS, Chakrabarty D (2009) Thermogravimetric and weathering study of novolac resin composites reinforced with mercerized bamboo fiber. Polym Compos 30:1408–1416

    Article  CAS  Google Scholar 

  23. Deshpande AP, Rao MB, Rao CL (2000) Extraction of BFs and their use as reinforcement in polymeric composites. J Appl Polym Sci 76:83–92

    Article  CAS  Google Scholar 

  24. Fakirov S, Bhattacharyya D (eds) (2007) Handbook of engineering biopolymers: homopolymers, blends and composites. Carl Hanser Verlag, Munich

    Google Scholar 

  25. Gatenholm P, Mathiasson A (1994) Biodegradable natural composites. II. Synergistic effects of processing cellulose with PHB. J Appl Polym Sci 51:1231–1237

    Article  CAS  Google Scholar 

  26. González D, Santos V, Parajó JC (2011) Manufacture of fibrous reinforcements for biocomposites and hemicellulosic oligomers from bamboo. Chem Eng J 167:278–287

    Article  Google Scholar 

  27. Gratani L, Crescente MF, Varone L, Fabrini G, Digiulio E (2008) Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome. Flora 203:77–84

    Article  Google Scholar 

  28. Grosser D, Liese W (1971) On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Sci Technol 5:290–312

    Article  Google Scholar 

  29. Han G, Cheng W (2010) Effect of coupling treatment and nanoclay on thermal stability of bamboo flour-filled high density polyethylene composites. Adv Mater Res 113–116:2349–2352

    Article  Google Scholar 

  30. Han G, Lei Y, Wu Q, Kojima Y, Suzuki S (2008) Bamboo-fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J Polym Environ 16:123–130

    Article  CAS  Google Scholar 

  31. He J, Tang Y, Wang S (2007) Differences in morphological characteristics of bamboo fibres and other natural cellulose fibres: studies on X-ray diffraction, solid state 13C-CP/MAS NMR, and second derivative FTIR Spectroscopy data. Iran Polym J 16:807–818

    CAS  Google Scholar 

  32. Hesse-Ertelt S, Witter R, Ulrich AS, Kondo T, Heinze T (2008) Spectral assignments and anisotropy data of cellulose I-alpha: 13C-NMR chemical shift data of cellulose I-alpha determined by INADEQUATE and RAI techniques applied to uniformly 13C-labeled bacterial celluloses of different Gluconacetobacter xylinus strains. Magn Reson Chem 46:1030–1036

    Article  CAS  Google Scholar 

  33. Higuchi T (1987) Chemistry and biochemistry of bamboo. Bamboo J 4:132–145

    CAS  Google Scholar 

  34. Huang X, Netravali A (2009) Biodegradable green composites made using bamboo micro/nano-fibrils and chemically modified soy protein resin. Compos Sci Technol 69:1009–1015

    Article  CAS  Google Scholar 

  35. Huang Y, Liu H, He P, Yuan L, Xiong H, Xu Y, Yu Y (2010) Nonisothermal crystallization kinetics of modified bamboo fiber/PCL composites. J Appl Polym Sci 116:2119–2125

    Article  CAS  Google Scholar 

  36. Ilvessalo-Pläffli MS (1995) Fiber atlas: identification of papermaking fibers. Springer, Berlin, pp 292–359

    Google Scholar 

  37. Ishii T, Hiroi T (1990) Linkage of phenolic acids to cell wall polysaccharides of bamboo shoot. Carbohydr Res 206:297–310

    Article  CAS  Google Scholar 

  38. Ismail H, Edyham MR, Wirjosentono B (2002a) Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent. Polym Test 21:139–144

    Article  CAS  Google Scholar 

  39. Ismail H, Shuhelmy S, Edyham MR (2002b) The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites. Eur Polym J 38:39–47

    Article  CAS  Google Scholar 

  40. Jain S, Kumar R (1992) Mechanical behaviour of bamboo and bamboo composite. J Mater Sci 27:4598–4604

    Article  CAS  Google Scholar 

  41. Jiang Z (2010) http://news.xinhuanet.com/english2010/china/2010-07/18/c_13402777.htm

  42. Jiang L, Huang J, Qian J, Chen F, Zhang J, Wolcott MP, Zhu Y (2008) Study of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/bamboo pulp fiber composites: effects of nucleation agent and compatibilizer. J Polym Environ 16:83–93

    Article  CAS  Google Scholar 

  43. Jiang L, Chen F, Qian J, Huang J, Wolcott MP, Liu L, Zhang J (2010) Reinforcing and toughening effects of bamboo pulp fiber on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber composites. Ind Eng Chem Res 49:572–577

    Article  CAS  Google Scholar 

  44. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohyd Polym 71:343–364

    Article  CAS  Google Scholar 

  45. Kalia S, Avérous L (eds) (2011) Biopolymers: biomedical and environmental applications. John Wiley & Scrivener Publishing, Hoboken, NJ

  46. Kang JT, Kim SH (2011) Improvement in the mechanical properties of polylactide and bamboo fiber biocomposites by fiber surface modification. Macromol Res 19:789–796

    Article  CAS  Google Scholar 

  47. Kim JY, Peck JH, Hwang S-H, Hong J, Hong SC, Huh W, Lee S-W (2008) Preparation and mechanical properties of poly(vinyl chloride)/bamboo flour composites with a novel block copolymer as a coupling agent. J Appl Polym Sci 108:2654–2659

    Article  CAS  Google Scholar 

  48. Kim BJ, Yao F, Han G, Wu Q (2012) Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polym Compos 3:68–78

    Article  Google Scholar 

  49. Klemm D, Schmauder HP, Heinze T (2002) Cellulose. Biopolymers 6:275–319

    CAS  Google Scholar 

  50. Kori Y, Kitagawa K, Hamada H (2005) Crystallization behavior and viscoelasticity of bamboo-fiber composites. J Appl Polym Sci 98:603–612

    Article  CAS  Google Scholar 

  51. Krishnaprasad R, Veena NR, Maria HJ, Rajan R, Skrifvars M, Joseph K (2009) Mechanical and thermal properties of bamboo microfibril reinforced polyhydroxybutyrate biocomposites. J Polym Environ 17:109–114

    Article  CAS  Google Scholar 

  52. Kumar S, Choudhary V, Kumar R (2010) Study on the compatibility of unbleached and bleached bamboo-fiber with LLDPE matrix. J Therm Anal Calorim 102:751–761

    Article  CAS  Google Scholar 

  53. Kumar V, Kushwaha PK, Kumar R (2011) Impedance-spectroscopy analysis of oriented and mercerized bamboo fiber-reinforced epoxy composite. J Mater Sci 46:3445–3451

    Article  CAS  Google Scholar 

  54. Kushwaha PK, Kumar R (2010) Bamboo fiber reinforced thermosetting resin composites: effect of graft copolymerization of fiber with methacrylamide. J Appl Polym Sci 118:1006–1013

    CAS  Google Scholar 

  55. Li Z (2005) Study on bamboo’s fiber reinforced polypropylene composite. J Fujian College Forestry 25:197–201 (in Chinese)

    Google Scholar 

  56. Li Z, Chen L, Huang Z, Zhan H (2005) Reinforcing mechanical of bamboo fiber reinforced polyamide resin composite. Trans China Pulp Paper 2:19–22 (in Chinese)

    CAS  Google Scholar 

  57. Liu Y, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fiber Polym 9:735–739

    Article  CAS  Google Scholar 

  58. Liu H, Wu Q, Han G, Yao F, Kojima Y, Suzuki S (2008) Compatibilizing and toughening bamboo flour-filled HDPE composites: mechanical properties and morphologies. Compos Part A-Appl S 39:1891–1900

    Article  CAS  Google Scholar 

  59. Liu H, Huang Y, Yuan L, He P, Cai Z, Shen Y, Xu Y, Yu Y, Xiong H (2010a) Isothermal crystallization kinetics of modified bamboo cellulose/PCL composites. Carbohyd Polym 79:513–519

    Article  CAS  Google Scholar 

  60. Liu D, Zhong T, Chang PR, Li K, Wu Q (2010b) Starch composites reinforced by bamboo cellulose crystals. Bioresource Technol 101:2529–2536

    Article  CAS  Google Scholar 

  61. Mi Y, Chen X, Cuo Q (1997) Bamboo fiber-reinforced polypropylene composites: crystallization and interfacial morphology. J Appl Polym Sci 64:1267–1273

    Article  CAS  Google Scholar 

  62. Mi Y, Chen X, Cuo Q, Chan C (1999) Bamboo fiber reinforced polypropylene composites. US Patent 5882745

  63. Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974

    Article  CAS  Google Scholar 

  64. Mohanty S, Nayak SK (2007) Rheological characterization of HDPE/sisal fiber composites. Polymer Eng Sci 47:1634–1642

    Article  CAS  Google Scholar 

  65. Mwaikambo LY, Ansell MP (2006) Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. Hemp fibres. J Mater Sci 41:2483–2496

    Article  CAS  Google Scholar 

  66. Nayak SK, Mohanty S, Samal SK (2009) Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater Sci Eng A Struct 523:32–38

    Article  Google Scholar 

  67. Ogawa K, Hirogaki T, Aoyama E, Katayama T (2004) Data mining of optimum conditions to acquire bamboo micro-fiber with mechanical methods. WIT Trans Built Environ High Perf Struct Mater II 7:441–450

    Google Scholar 

  68. Ogawa K, Hirogaki T, Aoyama E, Imamura H (2008) Bamboo fiber extraction method using a machining center. J Adv Mech Design Sys Manuf 2:550–559

    Article  Google Scholar 

  69. Okubo K, Fujii T, Thostenson ET (2009) Multi-scale hybrid biocomposite: processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos Part A-Appl S 40:469–475

    Article  Google Scholar 

  70. Parameswaran N, Liese W (1976) On the fine structure of bamboo fibres. Wood Sci Technol 10:231–246

    CAS  Google Scholar 

  71. Parameswaran N, Liese W (1980) Ultrastructural aspects of bamboo cells. Cellul Chem Technol 14:587–609

    Google Scholar 

  72. Pilla S (ed) (2011) Handbook of bioplastics and biocomposites engineering applications. Scrivener Publishing LLC, USA

    Google Scholar 

  73. Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos Struct 77:288–295

    Article  Google Scholar 

  74. Ratna Prasad AV, Mohana Rao K (2011) Mechanical properties of natural fibre reinforced polyester composites: Jowar, sisal and bamboo. Mater Design 32:4658–4663

    Article  Google Scholar 

  75. Satyanarayana KG, Sukumaran K, Mukherjee PS, Pavitharan C, Pillai SGK (1990) Natural fibre-polymer composites. Cement Concr Compos 12:117–136

    Article  CAS  Google Scholar 

  76. Saxena M, Gowri VS (2003) Studies on bamboo polymer composites with polyester amide polyol as interfacial agent. Polym Compos 24:428–436

    Article  CAS  Google Scholar 

  77. Serizawa S, Inoue K, Iji M (2006) Kenaf-fiber-reinforced poly (lactic acid) used for electronic products. J Appl Polym Sci 100:618–624

    Article  CAS  Google Scholar 

  78. Shao S, Jin Z, Wen G, Iiyama K (2009) Thermo characteristics of steam-exploded bamboo (Phyllostachys pubescens) lignin. Wood Sci Technol 43:643–652

    Article  CAS  Google Scholar 

  79. Shi QF, Mou HY, Li QY, Wang JK, Guo WH (2012) Influence of heat treatment on the heat distortion temperature of poly(lactic acid)/bamboo fiber/talc hybrid biocomposites. J Appl Polym Sci 123:2828–2836

    Article  CAS  Google Scholar 

  80. Shibata S, Cao Y, Fukumoto I (2008) Flexural modulus of the unidirectional and random composites made from biodegradable resin and bamboo and kenaf fibres. Compos Part A-Appl S 39:640–646

    Article  Google Scholar 

  81. Shih YF (2007) Mechanical and thermal properties of waste water bamboo husk fiber reinforced epoxy composites. Mater Sci Eng A Struct 445–446:289–295

    Article  Google Scholar 

  82. Singh S (2009) Green bio-composites from polyhydroxybutyrate-co-valerate (PHBV), wood fiber and talc. ProQuest, UMI Dissertation Publishing

  83. Singh S, Mohanty AK (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Tech 67:1753–1763

    Article  CAS  Google Scholar 

  84. Singh S, Mohanty AK, Sugie T, Takai Y, Hamada H (2008) Renewable resource based biocomposites from natural fiber and polyhydroxybutyrate-co-valerate (PHBV) bioplastic. Compos Part A-Appl S 39:875–886

    Article  Google Scholar 

  85. Sun J, Tian J, Gu Z (2006) Comparison of structure and thermal property between bamboo fibers and regenerated bamboo fibers. J Tianjin Polytech Univ 25:37–40

    Google Scholar 

  86. Thwe MM, Liao K (2000) Characterization of bamboo-glass fiber reinforced polymer matrix hybrid composite. J Mater Sci Lett 19:1873–1876

    Article  CAS  Google Scholar 

  87. Thwe MM, Liao K (2002) Effects of environmental aging on the mechanical properties of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos Part A-Appl S 33:43–52

    Article  Google Scholar 

  88. Thwe MM, Liao K (2003) Environmental effects on bamboo-glass/polypropylene hybrid composites. J Mater Sci 38:363–376

    Article  CAS  Google Scholar 

  89. Tokoro R, Vu DM, Okubo K, Tanaka T, Fujii T, Fujiura T (2008) How to improve mechanical properties of polylactic acid with bamboo fibers. J Mater Sci 43:775–787

    Article  CAS  Google Scholar 

  90. Tung N, Yamamoto H, Matsuoka T, Fujii T (2004) Effect of surface treatment on interfacial strength between bamboo fiber and PP resin. JSME Int J, Ser A 47:561–565

    Article  CAS  Google Scholar 

  91. Varada Rajulu A, Rama Devi R, Ganga Devi L (2005) Thermal degradation parameters of bamboo fiber reinforcement. J Reinforced Plastics Composites 24:1407–1411

    Article  Google Scholar 

  92. Wai NN, Nanko H, Murakami K (1985) A morphological study on the behavior of bamboo pulp fibers in the beating process. Wood Sci Technol 19:211–222

    Article  CAS  Google Scholar 

  93. Wan YQ, Ko FK (2009) Hierarchical structure and mechanical properties of bamboo fibrils. ICCM-17, Scotland, July 27–31

  94. Wang R, Wang C (2006) Research on raw bamboo fiber reinforced polypropylene composites. China Plastics 10:43–46 (in Chinese)

    Google Scholar 

  95. Wang H, Chang R, Sheng K, Adl M, Qian X (2008) Impact response of bamboo-plastic composites with the properties of bamboo and polyvinylchloride (PVC). J Bionic Eng 5(suppl):28–33

    Article  Google Scholar 

  96. Wang H, Sheng K, Chen J, Mao H, Qian X (2010) Mechanical and thermal properties of sodium silicate treated moso bamboo particles reinforced PVC composites. Sci China Ser E Tech Sci 53:2932–2935

    Article  CAS  Google Scholar 

  97. Wang X, Ren H, Zhang B, Fei B, Burgert I (2011) Cell wall structure and formation of maturing fibres of moso bamboo (Phyllostachys pubescens) increase buckling resistance. J Roy Soc Interface. doi:10.1098/rsif.2011.0462

  98. Wong S, Shanks R, Hodzic A (2002) Properties of poly(3-hydroxybutyric acid) composites with flax fibres modified by plasticiser absorption. Macromol Mater Eng 287:647–655

    CAS  Google Scholar 

  99. Wong KJ, Zahi S, Low KO, Lim CC (2010) Fracture characterisation of short bamboo fibre reinforced polyester composites. Mater Design 31:4147–4154

    Article  CAS  Google Scholar 

  100. Xu X, Wang Y, Zhang X, Jing G, Yu D, Wang S (2006) Effects on surface properties of natural bamboo fibers treated with atmospheric pressure argon plasma. Surf Interface Anal 38:1211–1217

    Article  CAS  Google Scholar 

  101. Xu Y, Lu Z, Tang R (2007) Structure and thermal properties of bamboo viscose, Tencel and conventional viscose fiber. J Therm Anal Calorim 89:197–201

    Article  CAS  Google Scholar 

  102. Yang Y (2004) Polypropylene composites reinforced with bamboo fibers. Plastic 33:47–49 (in Chinese)

    CAS  Google Scholar 

  103. Yao W, Zhang W (2011) Research on manufacturing technology and application of natural bamboo fibre. 2011 Fourth international conference on intelligent computation technology and automation. doi:10.1109/ICICTA.2011.327

  104. Zhang Y, Wu H, Qiu Y (2010) Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber. Bioresource Technol 101:7944–7950

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to National Natural Science Foundation of China (No. 51103073) and Natural Science Foundation of Jiangsu Province (No. BK2011828) for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dagang Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, D., Song, J., Anderson, D.P. et al. Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19, 1449–1480 (2012). https://doi.org/10.1007/s10570-012-9741-1

Download citation

Keywords

  • Bamboo fiber
  • Structure
  • Reinforcement
  • Thermoset and thermoplastic composites
  • Biocomposites
  • Interface adhesion