Skip to main content
Log in

Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Microcrystalline cellulose (MCC) and spherical nanocrystalline cellulose (SNCC) were successfully prepared from waste cotton fabrics through acid hydrolysis. The comparative analysis of the morphology and structure between the obtained MCC and SNCC was carried out. The SNCC suspension exhibited higher stability than the MCC suspension. Transmission electron microscopy in combination with atomic force microscopy showed that the cellulose nanospheres with average size of 35 nm were achieved, while the average particle size of MCC was 49 μm. The MCC and SNCC had similar functional groups and crystalline structure as confirmed by Fourier transform infrared spectroscopy and X-ray diffraction analysis, respectively. Viscometric average molecular weight measurement and thermo gravimetric analysis indicated that the degree of polymerization and thermal stability of SNCC was lower than that of MCC. These results should improve understanding of the characteristics of MCC and SNCC derived from waste cotton fabrics and lead to many new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Halim ES, Al-Deyab SS (2012) Chemically modified cellulosic adsorbent for divalent cations removal from aqueous solutions. Carbohydr Polym 87:1863–1868

    Article  CAS  Google Scholar 

  • Bai W, Holbery H, Li K (2009) A technique for production of nanocrystalline cellulose with a narrow size distribution. Cellulose 3:455–465

    Article  Google Scholar 

  • Chuayjuljit S, Su-Uthai S, Tunwattanaseree C, Charuchinda S (2009) Preparation of microcrystalline cellulose from waste-cotton fabric for biodegradability enhancement of natural rubber sheets. J Reinf Plast Compos 28:1245–1254

    Article  CAS  Google Scholar 

  • Corrêa AC, Teixeira EM, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curaua fibers. Cellulose 17:1183–1192

    Article  Google Scholar 

  • Das K et al (2009) A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16:783–793

    Article  CAS  Google Scholar 

  • Debzi EM, Chanzy H, Sugiyama J, Tekely P, Excoffier G (1991) The Iα → Iβ transformation of highly crystalline cellulose by annealing in various mediums. Macromolecules 24:6816–6822

    Article  CAS  Google Scholar 

  • Fengel D, Strobe C (1994) FTIR spectroscopic studies on the heterogeneous transformation of cellulose I into cellulose II. Acta Polym 44:319–324

    Article  Google Scholar 

  • Hafraoui SE, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65

    Article  Google Scholar 

  • Hamad W (2006) On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. Ca J Chem Eng 84:513–519

    Article  CAS  Google Scholar 

  • Hamad WY, Hu TQ (2010) Structure–process–yield interrelations in nanocrystalline cellulose extraction. Can J Chem Eng 88:392–402

    CAS  Google Scholar 

  • Hardy BJ, Sarko A (1996) Molecular dynamics simulations and diffraction-based analysis of the native cellulose fibre: structural modelling of the I-α and I-β phases and their interconversion. Polymer 37:1833–1839

    Article  CAS  Google Scholar 

  • Immergut EH, Schurz J, Mark H (1953) Viscosity-number-molecular weight relationship for cellulose and investigations of nitrocellulose in various solvents. Monatsh Chem 84:219–249

    Article  CAS  Google Scholar 

  • Isci A, Demirer GN (2007) Biogas production potential from cotton wastes. Renew Energy 32:750–757

    Article  CAS  Google Scholar 

  • Itoh T, Brown RM (1988) Development of cellulose synthesizing complexes in Boergesenia and Valonia. Protoplasma 144:160–169

    Article  CAS  Google Scholar 

  • Jonoobi M, Khazaeian A, Tahir PM, Azry SS, Oksman K (2011) Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process. Cellulose 18:1085–1095

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem 50:5438–5466

    Article  CAS  Google Scholar 

  • Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26:13450–13456

    Article  CAS  Google Scholar 

  • Revol JF, Dietrich A, Goring DAI (1987) Effect of mercerization on the crystallite size and crystallinity index in cellulose from different sources. Can J Chem 65:1724–1725

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5:1671–1677

    Article  CAS  Google Scholar 

  • Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glenn G, Orts WJ, Imam SH (2010) Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81:83–92

    Article  CAS  Google Scholar 

  • Ruan D, Huang Q, Zhang L (2005) Structure and properties of CdS/regenerated cellulose nanocomposites. Macromol Mater Eng 290:1017–1024

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Comrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sekiguchi Y, Sawatari C, Kondo T (2003) A gelation mechanism depending on hydrogen bond formation in regioselectively substituted o-methylcelluloses. Carbohydr Polym 53:145–153

    Article  CAS  Google Scholar 

  • Siqueira G et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158

    Article  CAS  Google Scholar 

  • Tang L, Huang B, Ou W, Chen X, Chen Y (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresour Technol 102:10973–10977

    Article  CAS  Google Scholar 

  • Tserki V, Matzinos P, Panayiotou C (2003) Effect of compatibilization on the performance of biodegradable composites using cotton fiber waste as filler. J Appl Polym Sci 88:1825–1835

    Article  CAS  Google Scholar 

  • Usarat R, Duangduen A, Duangdao A (2012) Cellulose esters from waste cotton fabric via conventional and microwave heating. Carbohydr Polym 87:84–94

    Article  Google Scholar 

  • Walther A, Timonen J, Diez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23:2924–2928

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2008) Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24:5–8

    Article  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikia M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    Article  CAS  Google Scholar 

  • Yi J, Xu Q, Zhang X, Zhang H (2009) Temperature-induced chiral nematic phase changes of suspensions of poly(N,N-dimethylaminoethyl methacrylate)-grafted cellulose nano crystals. Cellulose 16:989–997

    Article  CAS  Google Scholar 

  • Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y, Qi L (2010) Biotemplated synthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Mater 20:1152–1160

    CAS  Google Scholar 

  • Zou Y, Reddy N, Yang Y (2011) Reusing polyester/cotton blend fabrics for composites. Compos B Eng 42:763–770

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Science Foundation of China (51073108 and 50903053) and National High Technology Research and Development Program (863 Program, SS2012AA062613) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinxing Zhang or Canhui Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, R., Zhang, X., Tian, D. et al. Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose 19, 1189–1198 (2012). https://doi.org/10.1007/s10570-012-9730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9730-4

Keywords:

Navigation