Skip to main content
Log in

Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Stable aqueous suspensions of cellulose nano-crystals (CNCs) were fabricated from both native and mercerized cotton fibers by sulfuric acid hydrolysis, followed by high-pressure homogenization. Fourier transform infrared spectrometry and wide-angle X-ray diffraction data showed that the fibers had been transformed from cellulose I (native) to cellulose II (mercerized) crystal structure, and these polymorphs were retained in the nanocrystals, giving CNC-I and CNC-II. Transmission electron microscopy showed rod-like crystal morphology for both types of crystals under the given processing conditions with CNC-II having similar width but reduced length. Freeze-dried agglomerates of CNC-II had a much higher bulk density than that of CNC-I. Thermo-gravimetric analysis showed that CNC-II had better thermal stability. The storage moduli of CNC-II suspensions at all temperatures were substantially larger than those of CNC-I suspensions at the same concentration level. CNC-II suspensions and gels were more stable in response to temperature increases. Films of CNC and Poly(ethylene oxide) were tested. Both CNC-I/PEO and CNC-II/PEO composites showed increased tensile strength and elongation at break compared to pure PEO. However, composites with CNC-II had higher strength and elongation than composites with CNC-I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abidi N, Hequet E, Cabrales L (2010) Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers. Cellulose 17(1):153–160. doi:10.1007/s10570-009-9364-3

    Article  CAS  Google Scholar 

  • Ahn KH, Osaki K (1994) A network model for predicting the shear thickening behavior of a Poly(Vinyl Alcohol) sodium-borate aqueous-solution. J Non-Newton Fluid 55(3):215–227

    Article  CAS  Google Scholar 

  • Atalla RH, VanderHart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223:283–285

    Article  CAS  Google Scholar 

  • Benchabane A, Bekkour K (2008) Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym Sci 286(10):1173–1180. doi:10.1007/s00396-008-1882-2

    Article  CAS  Google Scholar 

  • Brownsey GJ, Ridout MJ (1985) Rheological characterization of microcrystalline cellulose dispersions: Avicel Rc 591. J Food Technol 20(2):237–243

    Article  Google Scholar 

  • Chang PR, Ai FJ, Chen Y, Dufresne A, Huang J (2009) Effects of starch nanocrystal-graft-polycaprolactone on mechanical properties of waterborne polyurethane-based nanocomposites. J Appl Polym Sci 111(2):619–627. doi:10.1002/App.29060

    CAS  Google Scholar 

  • Chen X, Zhang YM, Cheng LY, Wang HP (2009) Rheology of concentrated cellulose solutions in 1-butyl-3-methylimidazolium chloride. J Polym Environ 17(4):273–279. doi:10.1007/s10924-009-0149-4

    Article  CAS  Google Scholar 

  • Ciacco GT, Morgado DL, Frollini E, Possidonio S, El Seoud OA (2010) Some aspects of acetylation of untreated and mercerized sisal cellulose. J Braz Chem Soc 21(1):71–77

    Article  CAS  Google Scholar 

  • Das M, Chakraborty D (2006) Influence of alkali treatment on the fine structure and morphology of bamboo fibers. J Appl Polym Sci 102(5):5050–5056. doi:10.1002/App.25105

    Article  CAS  Google Scholar 

  • Deguchi S, Kuroda K, Akiyoshi K, Lindman B, Sunamoto J (1999) Gelation of cholesterol-bearing pullulan by surfactant and its rheology. Colloid Surface A 147(1–2):203–211

    Article  CAS  Google Scholar 

  • Dinand E, Chanzy H, Vignon MR (1996) Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3(3):183–188

    Article  CAS  Google Scholar 

  • Dinand E, Vignon M, Chanzy H, Heux L (2002) Mercerization of primary wall cellulose and its implication for the conversion of cellulose I -> cellulose II. Cellulose 9(1):7–18

    Article  CAS  Google Scholar 

  • Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082

    Article  CAS  Google Scholar 

  • El-Wakil NA, Hassan ML (2008) Structural changes of regenerated cellulose dissolved in FeTNa, NaOH/thiourea, and NMMO systems. J Appl Polym Sci 109(5):2862–2871. doi:10.1002/App.28351

    Article  CAS  Google Scholar 

  • Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35(3):208–213

    Article  CAS  Google Scholar 

  • George J, Ramana KV, Sabapathy SN, Jagannath JH, Bawa AS (2005) Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties. Int J Biol Macromol 37(4):189–194. doi:10.1016/j.ijbiomac.2005.10.007

    Article  CAS  Google Scholar 

  • Gwon JG, Lee SY, Doh GH, Kim JH (2010) Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J Appl Polym Sci 116(6):3212–3219. doi:10.1002/App.31746

    CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  • Hirota M, Tamura N, Saito T, Isogai A (2010) Water dispersion of cellulose II nanocrystals prepared by TEMPO-mediated oxidation of mercerized cellulose at pH 4.8. Cellulose 17(2):279–288. doi:10.1007/s10570-009-9381-2

    Article  CAS  Google Scholar 

  • Krebs FC (2008) Degradation and stability of polymer and organic solar cells. Sol Energy Mater Sol Cells 92(7):685. doi:10.1016/j.solmat.2008.01.016

    Article  CAS  Google Scholar 

  • KroonBatenburg LMJ, Kroon J (1997) The crystal and molecular structures of cellulose I and II. Glycoconjugate J 14(5):677–690

    Article  CAS  Google Scholar 

  • Kundu PP, Singh RP (2008) Effect of addition of surfactants on the rheology of gels from methylcellulose in N,N-dimethylformamide. J Appl Polym Sci 108(3):1871–1879. doi:10.1002/App.27839

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (1999) A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysis. J Am Chem Soc 121(43):9940–9946

    Article  CAS  Google Scholar 

  • Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 angstrom resolution. Biomacromolecules 2(2):410–416. doi:10.1021/mb005612q

    Article  CAS  Google Scholar 

  • Liu YP, Hu H (2008) X-ray diffraction study of bamboo fibers treated with NaOH. Fiber Polym 9(6):735–739. doi:10.1007/s12221-008-0115-0

    Article  CAS  Google Scholar 

  • Liu XX, Khor S, Petinakis E, Yu L, Simon G, Dean K, Bateman S (2010) Effects of hydrophilic fillers on the thermal degradation of poly(lactic acid). Thermochim Acta 509(1–2):147–151. doi:10.1016/j.tca.2010.06.015

    Article  CAS  Google Scholar 

  • Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohyd Polym 82(2):329–336. doi:10.1016/j.carbpol.2010.04.073

    Article  Google Scholar 

  • Mansikkamaki P, Lahtinen M, Rissanen K (2005) Structural changes of cellulose crystallites induced by mercerisation in different solvent systems; determined by powder X-ray diffraction method. Cellulose 12(3):233–242. doi:10.1007/s10570-004-3132-1

    Article  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125(47):14300–14306. doi:10.1021/Ja037055w

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose I-beta. Biomacromolecules 9(11):3133–3140. doi:10.1021/Bm800726v

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd Res 340(3):417–428. doi:10.1016/j.carres.2004.11.027

    Article  CAS  Google Scholar 

  • Park JM, Kim SJ, Jang JH, Wang ZJ, Kim PG, Yoon DJ, Kim J, Hansen G, DeVries KL (2008) Actuation of electrochemical, electro-magnetic, and electro-active actuators for carbon nanofiber and Ni nanowire reinforced polymer composites. Compos Part B-Eng 39(7–8):1161–1169. doi:10.1016/j.compositesb.2008.03.009

    Article  Google Scholar 

  • Paszner L (1968) Effect of inter- and intra-crystalline swelling on cellulose degradation by gamma-rays. Svensk Papperstidning-Nordisk Cellulosa 71(22):822

    CAS  Google Scholar 

  • Ray D, Sarkar BK (2001) Characterization of alkali-treated jute fibers for physical and mechanical properties. J Appl Polym Sci 80(7):1013–1020

    Article  CAS  Google Scholar 

  • Revol JF, Goring DAI (1981) On the mechanism of the mercerization of cellulose in wood. J Appl Polym Sci 26(4):1275–1282

    Article  CAS  Google Scholar 

  • Sauperl O, Stana-Kleinschek K, Ribitsch V (2009) Cotton cellulose 1, 2, 3, 4 buthanetetracarboxylic acid (BTCA) crosslinking monitored by some physical-chemical methods. Text Res J 79(9):780–791. doi:10.1177/0040517508096222

    Article  CAS  Google Scholar 

  • Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib Spectrosc 36(1):23–40. doi:10.1016/j.vibspec.2004.02.003

    Article  CAS  Google Scholar 

  • Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4(2):75–87

    Article  CAS  Google Scholar 

  • Uskokovic V (2008) Composites comprising cholesterol and carboxymethyl cellulose. Colloids Surf B 61(2):250–261. doi:10.1016/j.colsurfb.2007.08.014

    Article  CAS  Google Scholar 

  • Wang N, Ding EY, Cheng RS (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493. doi:10.1016/j.polymer.2007.03.062

    Article  CAS  Google Scholar 

  • Wu JJ, Liang SM, Dai HJ, Zhang XY, Yu XL, Cai YL, Zheng LN, Wen N, Jiang B, Xu J (2010) Structure and properties of cellulose/chitin blended hydrogel membranes fabricated via a solution pre-gelation technique. Carbohyd Polym 79(3):677–684. doi:10.1016/j.carbpol.2009.09.022

    Article  CAS  Google Scholar 

  • Yasuda K, Saito M, Kamide K (1993) Flow birefringence and viscosity of cellulose solutions in semidilute regime. Polym Int 30(3):393–400

    Article  CAS  Google Scholar 

  • Zhang JG, Elder TJ, Pu YQ, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohyd Polym 69(3):607–611. doi:10.1016/j.carbpol.2007.01.019

    Article  CAS  Google Scholar 

  • Zhou CJ, Chu R, Wu R, Wu QL (2011a) Electrospun polyethylene oxide/cellulose nanocrystal composite nanofibrous mats with homogeneous and heterogeneous microstructures. Biomacromolecules 12(7):2617–2625. doi:10.1021/Bm200401p

    Article  CAS  Google Scholar 

  • Zhou CJ, Wu QL, Yue YY, Zhang QG (2011b) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interf Sci 353(1):116–123. doi:10.1016/j.jcis.2010.09.035

    Article  CAS  Google Scholar 

  • Zhou CJ, Wu QL, Zhang QG (2011c) Dynamic rheology studies of in situ polymerization process of polyacrylamide-cellulose nanocrystal composite hydrogels. Colloid Polym Sci 289(3):247–255. doi:10.1007/s00396-010-2342-3

    Article  CAS  Google Scholar 

  • Zivanovic S, Li JJ, Davidson PM, Kit K (2007) Physical, mechanical, and antibacterial properties of chitosan/PEO blend films. Biomacromolecules 8(5):1505–1510. doi:10.1021/Bm061140p

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful for the financial support from the USDA CSREES (Award No: 2008-38814-04771) and from the National Natural Science Foundation of China (Award No: 31070505 and 31010103905). We also thank Dr. Vince Edwards of the USDA ARS Southern Regional Research Center in New Orleans, LA for providing the fabric material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, Y., Zhou, C., French, A.D. et al. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19, 1173–1187 (2012). https://doi.org/10.1007/s10570-012-9714-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9714-4

Keywords

Navigation