Advertisement

Cellulose

, Volume 19, Issue 4, pp 1425–1436 | Cite as

Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products

  • Natércia C. T. MartinsEmail author
  • Carmen S. R. Freire
  • Ricardo J. B. Pinto
  • Susana C. M. Fernandes
  • Carlos Pascoal Neto
  • Armando J. D. Silvestre
  • Jessica Causio
  • Giovanni Baldi
  • Patrizia Sadocco
  • Tito Trindade
Original Paper

Abstract

Nanofibrillated cellulose offers new technological solutions for the development of paper products. Here, composites of nanofibrillated cellulose (NFC) and Ag nanoparticles (NP) were prepared for the first time via the electrostatic assembly of Ag NP (aqueous colloids) onto NFC. Distinct polyelectrolytes have been investigated as macromolecular linkers in order to evaluate their effects on the building-up of Ag modified NFC and also on the final properties of the NFC/Ag composite materials. The NFC/Ag nanocomposites were first investigated for their antibacterial properties towards S. aureus and K. pneumoniae microorganisms as compared to NFC modified by polyelectrolytes linkers without Ag. Subsequently, the antibacterial NFC/Ag nanocomposites were used as fillers in starch based coating formulations for Eucalyptus globulus-based paper sheets. The potential of this approach to produce antimicrobial paper products will be discussed on the basis of complementary optical, air barrier and mechanical data.

Keywords

Nanofibrillated cellulose Silver colloids Nanocomposites Paper coating Antibacterial activity 

Notes

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement no. 228802. The authors thank the Centre Technique du Papier (France) for supplying the NFC used in this work. We thank RAIZ- Centro de Investigação da Floresta e do Papel (Portugal) for all the facilities provided in the paper coating experiments. Ricardo J.B. Pinto is grateful to FCT for a PhD grant (SFRH/BD/45364/2008). Susana C.M. Fernandes thanks FCT for funding her Postdoctoral Research Grant (SFRH/BPD/70119/2010).

References

  1. Amash A, Zugenmaier P (2000) Morphology and properties of isotropic and oriented samples of cellulose fibre–polypropylene composites. Polymer 41(4):1589–1596CrossRefGoogle Scholar
  2. Belgacem MN, Gandini A (2008) Monomers, polymers and composites from renewable resources, 1st edn. Elsevier, LondonGoogle Scholar
  3. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45(5):1992–1998. doi: 10.1021/Es103302t CrossRefGoogle Scholar
  4. Diez I, Eronen P, Osterberg M, Linder MB, Ikkala O, Ras RHA (2011) Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol Biosci 11(9):1185–1191. doi: 10.1002/mabi.201100099 CrossRefGoogle Scholar
  5. Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33. doi: 10.1007/s10853-009-3874-0 CrossRefGoogle Scholar
  6. El-Shishtawy RM, Asiri AM, Abdelwahed NAM, Al-Otaibi MM (2011) In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18(1):75–82. doi: 10.1007/s10570-010-9455-1 CrossRefGoogle Scholar
  7. Fernandes SCM, Freire CSR, Silvestre AJD, Pascoal Neto C, Gandini A, Berglund LA, Salmén L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81(2):394–401Google Scholar
  8. Friedrich CL, Moyles D, Beveridge TJ, Hancock REW (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44(8):2086–2092. doi: 10.1128/AAC.44.8.2086-2092.2000 CrossRefGoogle Scholar
  9. Gandini A (2011) The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem 13(5):1061–1083. doi: 10.1039/C0gc00789g CrossRefGoogle Scholar
  10. Goncalves G, Marques PAAP, Pinto RJB, Trindade T, Neto CP (2009) Surface modification of cellulosic fibres for multi-purpose TiO2 based nanocomposites. Compos Sci Technol 69(7–8):1051–1056CrossRefGoogle Scholar
  11. Gottesman R, Shukla S, Perkas N, Solovyov LA, Nitzan Y, Gedanken A (2011) Sonochemical coating of paper by microbiocidal silver nanoparticles. Langmuir 27(2):720–726. doi: 10.1021/La103401z CrossRefGoogle Scholar
  12. Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polymer J 43(8):3434–3441. doi: 10.1016/j.eurpolymj.2007.05.038 CrossRefGoogle Scholar
  13. Hubbe MA, Rojas OJ, Lucia AL, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3(3):929–980Google Scholar
  14. Karlsson JO, Henriksson A, Michalek J, Gatenholm P (2000) Control of cellulose-supported hydrogel microstructures by three-dimensional graft polymerization of glycol methacrylates. Polymer 41(4):1551–1559. doi: 10.1016/s0032-3861(99)00277-3 CrossRefGoogle Scholar
  15. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem-Int Edit 44(22):3358–3393. doi: 10.1002/anie.200460587 Google Scholar
  16. Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem-Int Edit 50(24):5438–5466. doi: 10.1002/anie.201001273
  17. Mak WC, Cheung KY, Trau D (2008) Influence of different polyelectrolytes on layer-by-layer microcapsule properties: Encapsulation efficiency and colloidal and temperature stability. Chem Mater 20(17):5475–5484. doi: 10.1021/Cm702254h CrossRefGoogle Scholar
  18. Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51. doi: 10.1016/j.carbpol.2007.07.025 Google Scholar
  19. Marini M, De Niederhausern S, Iseppi R, Bondi M, Sabia C, Toselli M, Pilati F (2007) Antibacterial activity of plastics coated with silver-doped organic-inorganic hybrid coatings prepared by sol-gel processes. Biomacromolecules 8(4):1246–1254. doi: 10.1021/Bm060721b CrossRefGoogle Scholar
  20. Melo LD, Mamizuka EM, Carmona-Ribeiro AM (2010) Antimicrobial particles from cationic lipid and polyelectrolytes. Langmuir 26(14):12300–12306. doi: 10.1021/La101500s CrossRefGoogle Scholar
  21. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353. doi: 10.1088/0957-4484/16/10/059 CrossRefGoogle Scholar
  22. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi: 10.1021/Bm061215p CrossRefGoogle Scholar
  23. Pinto RJB, Marques PAAP, Martins MA, Neto CP, Trindade T (2007) Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. J Colloid Interface Sci 312(2):506–512CrossRefGoogle Scholar
  24. Pinto RJB, Marques PAAP, Neto CP, Trindade T, Daina S, Sadocco P (2009) Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulosic fibers. Acta Biomater 5(6):2279–2289. doi: 10.1016/j.actbio.2009.02.003 CrossRefGoogle Scholar
  25. Potara M, Jakab E, Damert A, Popescu O, Canpean V, Astilean S (2011) Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus. Nanotechnology 22(13):135101. doi: 10.1088/0957-4484/22/13/135101 CrossRefGoogle Scholar
  26. Rabea EI, Badawy MET, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465. doi: 10.1021/Bm034130m CrossRefGoogle Scholar
  27. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83. doi: 10.1016/j.biotechadv.2008.09.002 CrossRefGoogle Scholar
  28. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491. doi: 10.1021/Bm0703970 CrossRefGoogle Scholar
  29. Silva AR, Unali G (2011) Controlled silver delivery by silver-cellulose nanocomposites prepared by a one-pot green synthesis assisted by microwaves. Nanotechnology 22(31):315605. doi: 10.1088/0957-4484/22/31/315605 CrossRefGoogle Scholar
  30. Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. doi: 10.1007/s10570-010-9405-y CrossRefGoogle Scholar
  31. Smiechowicz E, Kulpinski P, Niekraszewicz B, Bacciarelli A (2011) Cellulose fibers modified with silver nanoparticles. Cellulose 18(4):975–985. doi: 10.1007/s10570-011-9544-9 CrossRefGoogle Scholar
  32. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182. doi: 10.1016/j.jcis.2004.02.012 CrossRefGoogle Scholar
  33. Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloid Surf B 69(2):164–168. doi: 10.1016/j.colsurfb.2008.11.004 CrossRefGoogle Scholar
  34. Tome LC, Pinto RJB, Trovatti E, Freire CSR, Silvestre AJD, Neto CP, Gandini A (2011) Transparent bionanocomposites with improved properties prepared from acetylated bacterial cellulose and poly(lactic acid) through a simple approach. Green Chem 13(2):419–427. doi: 10.1039/c0gc00545b CrossRefGoogle Scholar
  35. Yano H, Nakagaito AN (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A-Mater Sci Process 80(1):155–159. doi: 10.1007/s00339-003-2225-2
  36. Yuan J, Geng J, Xing Z, Shen J, Kang I-K, Byun H (2010) Electrospinning of antibacterial poly(vinylidene fluoride) nanofibers containing silver nanoparticles. J Appl Polym Sci 116(2):668–672. doi: 10.1002/app.31632 Google Scholar
  37. Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761. doi: 10.1002/adem.200400097 CrossRefGoogle Scholar
  38. Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093. doi: 10.1016/j.carbpol.2009.10.045 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Natércia C. T. Martins
    • 1
    Email author
  • Carmen S. R. Freire
    • 1
  • Ricardo J. B. Pinto
    • 1
  • Susana C. M. Fernandes
    • 1
  • Carlos Pascoal Neto
    • 1
  • Armando J. D. Silvestre
    • 1
  • Jessica Causio
    • 2
  • Giovanni Baldi
    • 3
  • Patrizia Sadocco
    • 2
  • Tito Trindade
    • 1
  1. 1.CICECO, Department of ChemistryUniversity of AveiroAveiroPortugal
  2. 2.INNOVHUB-Paper DivisionMilanItaly
  3. 3.Centro Ricerche ColorobbiaSoviglianaItaly

Personalised recommendations