Skip to main content

Advertisement

Log in

Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers

Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanofibers have a bright future ahead as components of nano-engineered materials, as they are an abundant, renewable and sustainable resource with outstanding mechanical properties. However, before considering real-world applications, an efficient and energetically friendly production process needs to be developed that overcomes the extensive energy consumption of shear-based existing processes. This paper analyses how the charge content influences the mechanical energy that is needed to disintegrate a cellulose fiber. The introduction of charge groups (carboxylate) is achieved through periodate oxidation followed by chlorite oxidation reactions, carried out to different extents. Modified samples are then subjected to different levels of controlled mechanical energy and the yields of three different fractions, separated by size, are obtained. The process produces highly functionalized cellulose nanofibers based almost exclusively on chemical reactions, thus avoiding the use of intensive mechanical energy in the process and consequently reducing drastically the energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bobbitt JM, Flores MCL (1988) Organic nitrosonium salts as oxidants in organic chemistry. Heterocycles 27(2):509–533

    Article  CAS  Google Scholar 

  • Chang PS, Robyt JF (1996) Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. J Carbohydr Chem 15(7):819–830

    Article  CAS  Google Scholar 

  • Ding SY, Himmel ME (2006) The maize primary cell wall microfibril: a new model derived from direct visualization. J Agric Food Chem 54(3):597–606. doi:10.1021/jf051851z

    Article  CAS  Google Scholar 

  • Engelhardt J, Fischer S, Hettrich K, Krueger C, Nachtkamp K, Pinnow M (2009) Preparing dispersion containing a particle made of amorphous cellulose. Germany Patent, WO2009021687-A1

  • Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi:10.1021/bm801065u

    Article  CAS  Google Scholar 

  • Gross AS, Chu JW (2010) On the molecular origins of biomass recalcitrance: the interaction network and solvation structures of cellulose microfibrils. J Phys Chem B 114(42):13333–13341. doi:10.1021/jp106452m

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindstrom T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43:3434–3441. doi:10.1016/j.eurpolymj.2007.05.038

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. doi:10.1021/bm800038n

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212

    Article  CAS  Google Scholar 

  • Hou QX, Liu W, Liu ZH, Bai LL (2007) Characteristics of wood cellulose fibers treated with periodate and bisulfite. Ind Eng Chem Res 46:7830–7837. doi:10.1021/ie0704750

    Article  CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites, review. Bioresources 3(3):929–980

    Google Scholar 

  • Isogai A (2009) Individualization of nano-sized plant cellulose fibrils achieved by direct surface carboxylation using TEMPO catalyst. Paper presented at the 2009 International Conference on Nanotechnology for the Forest Products Industry, Edmonton, AB, Canada, June 23–26

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85. doi:10.1039/c0nr00583e

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai WH, Isogai T, Saito T, Isogai A, Iwata T (2010) Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils. Polym Degrad Stab 95(8):1394–1398. doi:10.1016/j.polymdegradstab.2010.01.017

    Article  CAS  Google Scholar 

  • Keckes J, Burgert I, Fruhmann K, Muller M, Kolln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg S, Fratzl P (2003) Cell-wall recovery after irreversible deformation of wood. Nat Mat 2(12):810–814. doi:10.1038/nmat1019

    Article  CAS  Google Scholar 

  • Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1(3):488–492

    Article  CAS  Google Scholar 

  • Liitia T, Maunu SL, Hortling B, Tamminen T, Pekkala O, Varhimo A (2003) Cellulose crystallinity and ordering of hemicelluloses in pine and birch pulps as revealed by solid-state NMR spectroscopic methods. Cellulose 10(4):307–316

    Article  Google Scholar 

  • Mora-Pale M, Meli L, Doherty TV, Linhardt RJ, Dordick JS (2011) Room temperature ionic liquids as emerging solvents for the pretreatment of lignocellulosic biomass. Biotechnol Bioeng 108(6):1229–1245. doi:10.1002/bit.23108

    Article  CAS  Google Scholar 

  • Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11(6):1696–1700. doi:10.1021/bm100214b

    Article  CAS  Google Scholar 

  • Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi:10.1021/bm061215p

    Article  CAS  Google Scholar 

  • Potthast A, Kostic M, Schiehser S, Kosma P, Rosenau T (2007) Studies on oxidative modifications of cellulose in the periodate system: molecular weight distribution and carbonyl group profiles. Holzforschung 61(6):662–667. doi:10.1515/hf.2007.099

    Article  CAS  Google Scholar 

  • Potthast A, Schiehser S, Rosenau T, Kostic M (2009) Oxidative modifications of cellulose in the periodate system—reduction and beta-elimination reactions. Holzforschung 63(1):12–17. doi:10.1515/hf.2009.108

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Isogai A, Pouteau J, Vinion M (2008) Fine cellulose fiber for dispersion used as functional additives such as gelatinizer and emulsifier. Japan Patent, JP2008001728-A

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10(7):1992–1996. doi:10.1021/bm900414t

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Isogai A (2010) Oxidation of bleached wood pulp by TEMPO/NaClO/NaClO2 system: effect of the oxidation conditions on carboxylate content and degree of polymerization. J Wood Sci 56(3):227–232. doi:10.1007/s10086-009-1092-7

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res J 29:786–794

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. doi:10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant-cell walls. Science 306(5705):2206–2211. doi:10.1126/science.1102765

    Article  CAS  Google Scholar 

  • Tejado A, Labidi J, Peña C, Álvarez de Arcaya P, Mondragon I (2006) Isolation and characterization of cellulose microfibrils from exotic natural fibers. Paper presented at the 9th European Workshop on Lignocellulosics and Pulp (EWLP), Vienna

  • Tejado A, van de Ven TGM, Alam MN, Antal M (2011) Highly charge-group modified cellulose fibers which can be made into cellulose nanostructures or super-absorbing cellulosic materials and method of making them. Canada Patent, US Provisional Patent Application 61450222

  • Turbak AE, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose production using high pressure homogeniser gives reduced costs and eliminates cellulose degradation. Germany Patent, US4374702-A

  • Varma AJ, Chavan VB, Rajmohanan PR, Ganapathy S (1997) Some observations on the high-resolution solid-state CP-MAS C13-NMR spectra of periodate-oxidised cellulose. Polym Degrad Stab 58(3):257–260

    Article  CAS  Google Scholar 

  • Yang H (2011) Investigation and characterization of oxidized cellulose and cellulose nanofiber films. M.Sc. Thesis, McGill University, Montreal

Download references

Acknowledgments

This work was funded by an Industrial Research Chair, funded by the National Sciences and Engineering Research Council of Canada (NSERC) and FPInnovations. The contribution of undergraduate students who participated in an industrial design project course in Chemical Engineering Department, McGill University, in which some of the data were collected, is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Tejado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejado, A., Alam, M.N., Antal, M. et al. Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 19, 831–842 (2012). https://doi.org/10.1007/s10570-012-9694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9694-4

Keywords

Navigation