Skip to main content
Log in

Elastic properties of cellulose nanopaper

Cellulose Aims and scope Submit manuscript

Abstract

Nanopaper is a transparent film made of network-forming nanocellulose fibers. These fibers are several micrometers long with a diameter of 4–50 nm. The reported elastic modulus of nanopaper often falls short of even conservative theoretical predictions based on the modulus of crystalline cellulose, although such predictions usually perform well for other fiber composite materials. We investigate this inconsistency and suggest explanations by identifying the critical factors affecting the stiffness of nanopaper. A similar inconsistency is found when predicting the stiffness of conventional paper, and it is usually explained by the effects introduced during drying. We found that the effect of the drying cannot solely explain the relatively low elastic modulus of nanopaper. Among the factors that showed the most influence are the presence of non-crystalline regions along the length of the nanofibers, initial strains and the three-dimensional structure of individual bonds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  • Agarwal UP, Reiner RS, Filpponen I, Isogai A, Argyropoulos DS (2010) Crystallinities of nanocrystalline and nanofibrillated celluloses by FT- raman spectroscopy. In: TAPPI international conference on nanotechnology for the forest product industry, Helsniki, 2010, Tappi, p 7

  • Algar WH (1965) Effect of structure on the mechanical properties of paper. In: Bolam F (ed) Consolidation of the paper web, vol 2. British Paper and Board Makers’s Association, Cambridge, pp 814–851

    Google Scholar 

  • Åström J, Saarinen S, Niskanen K, Kurkijarvi J (1994) Microscopic mechanics of fiber networks. J Appl Phys 75(5):2383–2392

    Article  Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3):559–574. doi:10.1007/s10570-009-9393-y

    Article  CAS  Google Scholar 

  • Chou T-W (1992) Microstructural design of fiber composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cox HL (1952) The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 3(3):72–79

    Article  Google Scholar 

  • Henriksson M, Henriksson G, Berglund LA, Lindström T (2007) An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Euro Polym J 43(8):3434–3441. doi:10.1016/j.eurpolymj.2007.05.038

    Article  CAS  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindström T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. doi:10.1021/bm800038n

    Article  CAS  Google Scholar 

  • Heyden S (2000) Network modelling for the evaluation of mechanical properties of cellulose fluff. Lund University, Lund

    Google Scholar 

  • Kulachenko A, Uesaka T (2010) Simulation of wet fiber network deformation. Paper presented at the progress in paper physics. Montreal, Canada, 6–11 June

  • Lindström SB, Karabulut E, Kulachenko A, Sehaqui H, Wågberg L (2012) Mechanosorptive creep in nanocellulose materials. Cellulose. doi:10.1007/s10570-012-9665-9

  • Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249. doi:10.1007/s10086-009-1029-1

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, Langan P (2003) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4(4):1013–1017. doi:10.1021/bm025772x

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Wada M, Forsyth VT (2010) Looking at hydrogen bonds in cellulose. Acta Crystallogr Sect D 66(11):1172–1177. doi:10.1107/S0907444910032397

    Article  Google Scholar 

  • Niskanen KJ (2008) Paper physics. Papermaking science and technology, vol 16, 2 edn. Fapet Oy, Helsinki, Finland

  • Niskanen KJ, Alava MJ (1994) Planar random networks with flexible fibers. Phys Rev Lett 73(25):3475

    Article  CAS  Google Scholar 

  • Page DH, Seth RS (1980a) The elastic modulus of paper. The effects of dislocations, microcompressions, curl, crimps, and kinks. Tappi 63(10):99–102

    Google Scholar 

  • Page DH, Seth RS (1980b) The elastic modulus of paper. The importance of fiber modulus, bonding, and fiber length. Tappi 63(6):113–116

    Google Scholar 

  • Rigdahl M, Salmén NL (1984) Dynamic mechanical properties of paper: effect of density and drying restraints. J Mater Sci 19(9):2955–2961. doi:10.1007/bf01026973

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660. doi:10.1002/pol.1962.1205716551

    Article  CAS  Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11(9):2195–2198. doi:10.1021/bm100490s

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24(14):4168–4175. doi:10.1021/ma00014a033

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85. doi:10.1007/s10570-008-9244-2

    Article  CAS  Google Scholar 

  • Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13(5):509–517. doi:10.1007/s10570-006-9068-x

    Article  CAS  Google Scholar 

  • Uesaka T, Moss C, Nanri Y (1992) The characterization of hygroexpansivity of paper. J Pulp Paper Sci 18(1):J11–J16

    Google Scholar 

  • Wriggers P, Zavarise G (1997) On contact between three-dimensional beams undergoing large deflections. Commun Numer Methods Eng 13:429–438

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of BiMaC Innovation and EffTech program of the Finnish Forest Cluster are greatly acknowledged by the authors. Anne-Mari Olsson at Innventia AB is very much acknowledged for the assistance during DMA experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kulachenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulachenko, A., Denoyelle, T., Galland, S. et al. Elastic properties of cellulose nanopaper. Cellulose 19, 793–807 (2012). https://doi.org/10.1007/s10570-012-9685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9685-5

Keywords

Navigation