Skip to main content

Advertisement

Log in

Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels

Cellulose Aims and scope Submit manuscript

Abstract

Mechanical, thermal and oxygen barrier properties of regenerated cellulose films prepared from aqueous cellulose/alkali/urea solutions can be markedly improved by controlling the drying conditions of the films. By pre-pressing followed by vacuum drying under compression, the tensile strength, Young’s modulus, coefficient of thermal expansion and oxygen permeability of the dried films reached 263 MPa, 7.3 GPa, 10.3 ppm K−1 and 0.0007 ml μm m−2 day−1 kPa−1, respectively. Thus, films produced in this way show the highest performance of regenerated cellulose films with no orientation of cellulose chains reported to date. These improved properties are accompanied by a clear increase in cellulose II crystallinity from 50 to 62% during pre-pressing/press-vacuum drying process. At the same time, the film density increased from 1.45 to 1.57 g cm−3, and the moisture content under equilibrium conditions decreased from 14.1 to 9.8%. Hence, the aqueous alkali/urea solvent system has potential applications in producing new and environmentally friendly cellulose films with high performances through control of the drying conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander LE (1979) X-ray diffraction methods in polymer science. Robert E. Kreiger Publishing Co., Humington, pp 423–424

    Google Scholar 

  • Aulin C, Gällstedt M, Lindström T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Zhou J, Qi H, Chen H, Kondo T, Chen X, Chu B (2007) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  CAS  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose aerogels from aqueous alkali hydroxide–urea solution. ChemSusChem 1:149–154

    Article  CAS  Google Scholar 

  • Cai J, Wang Q, Zhang L (2010) Prepare of a kind of high strength and optically transparent cellulose material. China Patent ZL20100235233.1

  • Ebina T, Mizukami F (2007) Flexible transparent clay films with heat-resistant and high gas-barrier properties. Adv Mater 19:2450–2453

    Article  CAS  Google Scholar 

  • Edlund U, Zhu Ryberg YZ, Albertsson AC (2010) Barrier films from renewable forestry waste. Biomacromolecules 11:2532–2538

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwamoto S, Kumamoto Y, Ohdaira T, Suzuki R, Isogai A (2011) Pore size determination of TEMPO-oxidized cellulose nanofibril films by positron annihilation lifetime spectroscopy. Biomacromolecules 12:4057–4062

    Article  CAS  Google Scholar 

  • Gindl W, Martinschitz KJ, Boesecke P, Keckes J (2006) Changes in the molecular orientation and tensile properties of uniaxially drawn cellulose films. Biomacromolecules 7:3146–3150

    Article  CAS  Google Scholar 

  • Hartman J, Albertsson AC, Sjöberg J (2006) Surface- and bulk-modified galactoglucomannan hemicellulose films and film laminates for versatile oxygen barriers. Biomacromolecules 7:1983–1989

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  • Hirota M, Furihata K, Saito T, Kawada T, Isogai A (2010) Glucose/glucuronic acid alternating co-polysaccharides prepared from TEMPO-oxidized native celluloses by surface peeling. Angew Chem Int Ed 49:7670–7672

    Article  CAS  Google Scholar 

  • Hori R, Wada M (2006) The thermal expansion of cellulose II and IIIII crystals. Cellulose 13:281–290

    Article  CAS  Google Scholar 

  • Hyden WL (1929) Manufacture and properties of regenerated cellulose films. Ind Eng Chem 21:405–410

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Kong K, Eichhorn SJ (2005) Crystalline and amorphous deformation of process-controlled cellulose-II fibres. Polymer 46:6380–6390

    Article  CAS  Google Scholar 

  • Kontturi E, Tammelin T, Österberg M (2006) Cellulose—model films and the fundamental approach. Chem Soc Rev 35:1287–1304

    Article  CAS  Google Scholar 

  • Liang S, Wu J, Tian H, Zhang L, Xu J (2008) High-strength cellulose/poly(ethylene glycol) gels. ChemSusChem 1:558–563

    Article  CAS  Google Scholar 

  • Liu S, Zhang L, Sun Y, Lin Y, Zhang X, Nishiyama Y (2009) Supramolecular structure and properties of high strength regenerated cellulose films. Macromol Biosci 9:29–35

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A-Mater Sci Process 80:155–159

    Article  CAS  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687

    Article  CAS  Google Scholar 

  • Nogi M, Iwamoto S, Nakagaito A, Yano H (2009) Optically transparent nanofiber paper. Adv Mater 21:1595–1598

    Article  CAS  Google Scholar 

  • Northolt MG, Boerstoel H, Maatman H, Huisman R, Veurink J, Elzerman H (2001) The structure and properties of cellulose fibres spun from an anisotropic phosphoric acid solution. Polymer 42:8249–8264

    Article  CAS  Google Scholar 

  • Ohlrogge J, Allen D, Berguson B, DellaPenna D, Shachar-Hill Y, Stymne S (2009) Driving on biomass. Science 324:1019–1020

    Article  CAS  Google Scholar 

  • Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184

    Article  CAS  Google Scholar 

  • Rabek J (1980) Experimental methods in polymer chemistry. Wiley, Chichester

    Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Rederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  Google Scholar 

  • Read SM, Bacic T (2002) Prime time for cellulose. Science 295:59–60

    Article  CAS  Google Scholar 

  • Rüsch gen. Klaas M, Schöne H (2009) Direct, high-yield conversions of cellulose into biofuel and platform chemicals-on the way to a sustainable biobased economy. ChemSusChem 2:127–128

    Article  Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198

    Article  CAS  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  CAS  Google Scholar 

  • Yang Q, Lue A, Qi H, Sun Y, Zhang X, Zhang L (2009) Properties and bioapplications of blended cellulose and corn protein films. Macromol Biosci 9:849–856

    Article  CAS  Google Scholar 

  • Yang Q, Fukuzumi H, Saito T, Isogai A, Zhang L (2011a) Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. Biomacromolecules 12:2766–2771

    Article  CAS  Google Scholar 

  • Yang Q, Qin X, Zhang L (2011b) Properties of cellulose films prepared from NaOH/urea/zincate aqueous solution at low temperature. Cellulose 18:681–688

    Article  CAS  Google Scholar 

  • Zhu Ryberg YZ, Edlund U, Albertsson AC (2011) Conceptual approach to renewable barrier film design based on wood hydrolysate. Biomacromolecules 12:1355–1362

    CAS  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Japan Society for the Promotion of Science (JSPS), Grant-in-Aid for Scientific Research S (grant number 21228007), and by the China Scholarship Council (CSC) for QY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 167 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Fujisawa, S., Saito, T. et al. Improvement of mechanical and oxygen barrier properties of cellulose films by controlling drying conditions of regenerated cellulose hydrogels. Cellulose 19, 695–703 (2012). https://doi.org/10.1007/s10570-012-9683-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9683-7

Keywords

Navigation