Skip to main content
Log in

Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid

Cellulose Aims and scope Submit manuscript

Abstract

The susceptibility of (1) never-dried and (2) freeze-dried bacterial cellulose (BC) towards organic acid esterification is reported in this work. When never-dried BC (BC which was solvent exchanged from water through methanol into pyridine) was modified with hexanoic acid, it was found that the degree of substitution (DS) was significantly lower than that of hexanoic acid modified freeze-dried BC. The crystallinity of freeze-dried BC hexanoate was found to be significantly lower compared to neat BC and never-dried BC hexanoate. This result, along with the high DS indicates that significant bulk modification occurred during the esterification of freeze-dried BC. Such results were not observed for never-dried BC hexanoate. All these evidence point towards to fact that freeze-dried BC was more susceptible to organic acid esterification compared to never-dried BC. A few hypotheses were explored to explain the observed behaviour and further investigated to elucidate our observation; the effect of residual water in cellulose, the accessibility of hydroxyl groups and the crystal structure of never-dried and freeze-dried BC on the susceptibility of cellulose fibrils to esterification, respectively. However, the investigation of these hypotheses raised more questions and we are still left with the main question; why do BC nanofibres behave differently when modifying freeze-dried BC or never-dried BC?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barud HS, de Araujo AM, Santos DB, de Assuncao RMN, Meireles CS, Cerqueira DA, Rodrigues G, Ribeiro CA, Messaddeq Y, Ribeiro SJL (2008) Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose. Thermochim Acta 471(1–2):61–69

    Article  CAS  Google Scholar 

  • Blaker JJ, Lee KY, Li XX, Menner A, Bismarck A (2009) Renewable nanocomposite polymer foams synthesized from Pickering emulsion templates. Green Chem 11(9):1321–1326. doi:10.1039/b913740h

    Article  CAS  Google Scholar 

  • Blaker JJ, Lee KY, Bismarck A (2011) Hierarchical composites made entirely from renewable resources. J Biobased Mater Bioenergy 5(1):1–16

    Article  CAS  Google Scholar 

  • Brown AJ (1886) The chemical action of pure cultivations of bacterium aceti. J Chem Soc Trans 49:172–187

    Article  CAS  Google Scholar 

  • Colombo EA, Immerguy EH (1970) Interaction of cellulose with organic liquids and vapors. J Polym Sci C Polym Symp 31(1):137–156

    Article  Google Scholar 

  • Czaja W, Romanovicz D, Brown RM (2004) Structural investigation of microbial cellulose produced in stationary and agitated culture. Cellulose 113–4:403–411

    Article  Google Scholar 

  • de Menezes AJ, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552–4563

    Article  Google Scholar 

  • Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenerated cellulose. Cellulose 13(3):291–307

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Freire CSR, Silvestre AJD, Neto CP, Belgacem MN, Gandini A (2006) Controlled heterogeneous modification of cellulose fibers with fatty acids: effect of reaction conditions on the extent of esterification and fiber properties. J Appl Polym Sci 100(2):1093–1102

    Article  CAS  Google Scholar 

  • Gardner DJ, Oporto GS, Mills R, Samir M (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22(5–6):545–567

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T, Koschella A (2006) Esterification of polysaccharides. Springer, Berlin

    Google Scholar 

  • Herrick FW, Casebier RL, Hamilton RI, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Symp 37:797–813

    CAS  Google Scholar 

  • Horii F, Hirai A, Kitamaru R (1987a) Cp/Mas C-13 NMR-spectra of the crystalline components of native celluloses. Macromolecules 20(9):2117–2120

    Article  CAS  Google Scholar 

  • Horii F, Yamamoto H, Kitamaru R, Tanahashi M, Higuchi T (1987b) Transformation of native cellulose crystals induced by saturated steam at high-temperatures. Macromolecules 20(11):2946–2949

    Article  CAS  Google Scholar 

  • Hsieh YC, Yano H, Nogi M, Eichhorn SJ (2008) An estimation of the young’s modulus of bacterial cellulose filaments. Cellulose 15(4):507–513

    Article  CAS  Google Scholar 

  • Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8(6):1973–1978. doi:10.1021/bm070113b

    Article  CAS  Google Scholar 

  • Ilharco LM, Garcia AR, daSilva JL, Ferreira LFV (1997) Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13(15):4126–4132

    Article  CAS  Google Scholar 

  • Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11(3–4):475–480. doi:10.1023/B:CELL.0000046410.31007.0b

    Article  CAS  Google Scholar 

  • Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A Physicochem Eng Asp 240(1–3):63–67. doi:10.1016/j.colsurfa.2004.03.007

    Article  CAS  Google Scholar 

  • Kim DY, Nishiyama Y, Kuga S (2002) Surface acetylation of bacterial cellulose. Cellulose 9(3–4):361–367. doi:10.1023/a:1021140726936

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Hessler N, Koth D, Sultanova B (2009) Nanocellulose materials—different cellulose, different functionality. Macromol Symp 280:60–71

    Article  CAS  Google Scholar 

  • Kuga S, Kim DY, Nishiyama Y, Brown RM (2002) Nanofibrillar carbon from native cellulose. Mol Cryst Liq Cryst 387:237–243. doi:10.1080/10587250290113510

    Google Scholar 

  • Lee KY, Blaker JJ, Bismarck A (2009) Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos Sci Technol 69(15–16):2724–2733

    Article  CAS  Google Scholar 

  • Lee K-Y, Quero F, Blaker JJ, Hill CAS, Eichhorn SJ, Bismarck A (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18(3):595–605

    Article  CAS  Google Scholar 

  • Ly EH, Bras J, Sadocco P, Belgacem MN, Dufresne A, Thielemans W (2010) Surface functionalization of cellulose by grafting oligoether chains. Mater Chem Phys 120(2–3):438–445

    Article  CAS  Google Scholar 

  • Merchant MV (1957) A study of certain phenomena of the liquid exchange of water-swollen cellulose fibers and their subsequent drying from hydrocarbons. Lawrence College, Appleton

    Google Scholar 

  • Pommet M, Juntaro J, Heng JYY, Mantalaris A, Lee AF, Wilson K, Kalinka G, Shaffer MSP, Bismarck A (2008) Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9(6):1643–1651

    Article  CAS  Google Scholar 

  • Reiling S, Brickmann J (1995) Theoretical investigations on the structure and physical-properties of cellulose. Macromol Theory Simul 4(4):725–743

    Article  CAS  Google Scholar 

  • Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2(2):111–127

    Article  CAS  Google Scholar 

  • Sassi JF, Tekely P, Chanzy H (2000) Relative susceptibility of the I-alpha and I-beta phases of cellulose towards acetylation. Cellulose 7(2):119–132

    Article  CAS  Google Scholar 

  • Sczostak A (2009) Cotton linters: an alternative cellulosic raw material. Macromol Symp 280:45–53

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin-Jr AE, Conrad CM (1959) An emperical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. doi:10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  • Spinu M, Dos Santos N, Le Moigne N, Navard P (2011) How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent? Cellulose 18(2):247–256

    Article  CAS  Google Scholar 

  • Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the 2 crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24(14):4168–4175

    Article  CAS  Google Scholar 

  • Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464. doi:10.1021/bm901186u

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: Properties, uses and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:459–494

    Google Scholar 

  • Vanderhart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state C-13 NMR. Macromolecules 17(8):1465–1472. doi:10.1021/ma00138a009

    Article  CAS  Google Scholar 

  • Venkateswaran A, Riemen WP (1965) Experiments on the effect of ethylamine treatment on the crystallnity of cellulose. J Appl Polym Sci 9(3):1139–1148

    Article  CAS  Google Scholar 

  • Wada M, Okano T, Sugiyama J (2001) Allomorphs of native crystalline cellulose I evaluated by two equatorial d-spacings. J Wood Sci 47(2):124–128

    Article  CAS  Google Scholar 

  • Yin CY, Li JB, Xu Q, Peng Q, Liu YB, Shen XY (2007) Chemical modification of cotton cellulose in supercritical carbon dioxide: Synthesis and characterization of cellulose carbamate. Carbohydr Polym 67(2):147–154. doi:10.1016/j.carbpol.2006.05.010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the UK Engineering and Physical Research Council (EPSRC) (EP/F032005/1) and Imperial College London for a Deputy Rector’s award for KYL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bismarck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KY., Bismarck, A. Susceptibility of never-dried and freeze-dried bacterial cellulose towards esterification with organic acid. Cellulose 19, 891–900 (2012). https://doi.org/10.1007/s10570-012-9680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9680-x

Keywords

Navigation