Skip to main content
Log in

Adding value to the Brazilian sisal: acid hydrolysis of its pulp seeking production of sugars and materials

Cellulose Aims and scope Submit manuscript

Abstract

The present work is inserted into the broad context of the upgrading of lignocellulosic fibers. Sisal was chosen in the present study because more than 50% of the world’s sisal is cultivated in Brazil, it has a short life cycle and its fiber has a high cellulose content. Specifically, in the present study, the subject addressed was the hydrolysis of the sisal pulp, using sulfuric acid as the catalyst. To assess the influence of parameters such as the concentration of the sulfuric acid and the temperature during this process, the pulp was hydrolyzed with various concentrations of sulfuric acid (30–50%) at 70 °C and with 30% acid (v/v) at various temperatures (60–100 °C). During hydrolysis, aliquots were withdrawn from the reaction media, and the solid (non-hydrolyzed pulp) was separated from the liquid (liquor) by filtering each aliquot. The sugar composition of the liquor was analyzed by HPLC, and the non-hydrolyzed pulps were characterized by viscometry (average molar mass), and X-ray diffraction (crystallinity). The results support the following conclusions: acid hydrolysis using 30% H2SO4 at 100 °C can produce sisal microcrystalline cellulose and the conditions that led to the largest glucose yield and lowest decomposition rate were 50% H2SO4 at 70 °C. In summary, the study of sisal pulp hydrolysis using concentrated acid showed that certain conditions are suitable for high recovery of xylose and good yield of glucose. Moreover, the unreacted cellulose can be targeted for different applications in bio-based materials. A kinetic study based on the glucose yield was performed for all reaction conditions using the kinetic model proposed by Saeman. The results showed that the model adjusted to all 30–35% H2SO4 reactions but not to greater concentrations of sulfuric acid. The present study is part of an ongoing research program, and the results reported here will be used as a comparison against the results obtained when using treated sisal pulp as the starting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • Aguilar R, Ramirez JA, Garrote G, Vazquez M (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55:309–318

    Article  Google Scholar 

  • Almeida EVR, Frollini E, Castellan A, Coma V (2010) Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution. Carbohydr Polym 80:655–664

    Article  CAS  Google Scholar 

  • Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34:551–573

    Article  CAS  Google Scholar 

  • Botaro VR, Siqueira G, Megiatto JD Jr, Frollini E (2010) Sisal fibers treated with NaOH and benzophenonetetracarboxylic dianhydride as reinforcement of phenolic matrix. J Appl Polym Sci 115:269–276

    Article  CAS  Google Scholar 

  • Browning BL (1967) Methods of wood chemistry. Interscience, New York

    Google Scholar 

  • Buschle-Diller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibres. J Appl Polym Sci 45:967–979

    Article  CAS  Google Scholar 

  • Camacho F, Gonzálles-Tello P, Jurado E, Robles A (1996) Microcrystalline-cellulose hydrolysis with concentrated sulfuric acid. J Chem Technol Biotechnol 67:350–356

    Article  CAS  Google Scholar 

  • Cerveró JM, Skovgaard PA, Felby C, Sorensen HR, Jorgensen H (2010) Enzymatic hydrolysis and fermentation of palm kernel press cake for production of bioethanol. Enzyme Microb Technol 46:177–184

    Article  Google Scholar 

  • Cho DH, Shin SJ, Bae Y, Park C, Kim YH (2011) Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis. Bioresour Technol 102:4439–4443

    Article  CAS  Google Scholar 

  • Ciacco GT, Morgado DL, Frollini E, Possidonio S, El Seoud AO (2010) Some aspects of acetylation of untreated and mercerized sisal cellulose. J Braz Chem Soc 21:71–77

    Article  CAS  Google Scholar 

  • Corrêa AC, Teixeira EM, Pessan LA, Mattoso LHC (2010) Cellulose nanofibers from curauá fibers. Cellulose 17:1183–1192

    Article  Google Scholar 

  • Costa ACA, Junior NP, Aranda DAG (2010) The situation of biofuels in Brazil: new generation technologies. Renew Sustain Energy Rev 14:3041–3049

    Article  Google Scholar 

  • Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88:17–28

    Article  CAS  Google Scholar 

  • Dias MOS, Ensinas AV, Nebra SA, Maciel Filho R, Rossell CEV, Maciel MRW (2009) Production of bioethanol and other bio-based materials from sugarcane bagasse: integration to conventional bioethanol production process. Chem Eng Res Des 87:1206–1216

    Article  CAS  Google Scholar 

  • Ferreira S, Gil N, Queiroz JA, Duarte AP, Domingues FC (2011) An evaluation of the potential of Acacia dealbata as raw material for bioethanol production. Bioresour Technol 102:4766–4773

    Article  CAS  Google Scholar 

  • Garves K (1996) Temperature, salt, and acidity effects on the hydrolysis of cellulose dissolved in concentrated acids. Cell Chem Technol 30:3–12

    CAS  Google Scholar 

  • Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36:84–89

    Article  CAS  Google Scholar 

  • Gong CS, Cao NJ, Du J, Tsao GT (1999) Ethanol production from renewable resources. Adv Biochem Eng Biotechnol 65:207–241

    CAS  Google Scholar 

  • Graf A, Koehler T (2000) Oregon: cellulose-ethanol study. Oregon Office of Energy, USA

    Google Scholar 

  • Gremos S, Zarafeta D, Kekos D, Kolisis F (2011) Direct enzymatic acylation of cellulose pretreated in BMIMCl ionic liquid. Bioresour Technol 102:1378–1382

    Article  CAS  Google Scholar 

  • Hall M, Bansal P, Lee HJ, Realff MJ, Bommarius AS (2010) Cellulose crystallinity—a key predictor of the enzymatic hydrolysis rate. FEBS J 277:1571–1582

    Article  CAS  Google Scholar 

  • Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568

    Article  CAS  Google Scholar 

  • Kuo CH, Lee CK (2009) Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydr Polym 77:41–46

    Article  CAS  Google Scholar 

  • Lacerda TM, de Paula MP, Zambon M, Frollini E (2012) Saccharification of Brazilian sisal pulp: evaluating the impact of mercerization on non-hydrolyzed pulp and hydrolysis products. Cellulose 19:351–362

    Article  CAS  Google Scholar 

  • Lenihan P, Orozco A, O’neill E, Ahmad MNM, Rooney DW, Walker GM (2010) Dilute acid hydrolysis of lignocellulosic biomass. Chem Eng J 156:395–403

    Article  CAS  Google Scholar 

  • Lima GDM, Sierakowski M-R, Faria-Tischer PCS, Tischer CA (2011) Characterisation of bacterial cellulose partly acetylated by dimethylacetamide/lithium chloride. Mater Sci Eng, C 31:190–197

    Article  CAS  Google Scholar 

  • Megiatto JD Jr, Hoareau W, Gardrat C, Frollini E, Castellan A (2007) Sisal fibers: surface chemical modification using reagent obtained from a renewable source; characterization of hemicellulose and lignin as model study. J Agric Food Chem 55:8576–8584

    Article  CAS  Google Scholar 

  • Megiatto JD Jr, Silva CG, Ramires EC, Frollini E (2009) Thermoset matrix reinforced with sisal fibers: effect of the cure cycle on the properties of the biobased composite. Polym Test 28:793–800

    Article  CAS  Google Scholar 

  • Morgado DL, Frollini E, Castellan A, Rosa DS, Coma V (2011) Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose. Cellulose 18:699–712

    Article  CAS  Google Scholar 

  • Mosier NS, Sarikaya A, Ladisch CM, Ladisch MR (2001) Characterization of dicarboxylic acids for cellulose hydrolysis. Biotechnol Prog 17:474–480

    Article  CAS  Google Scholar 

  • Najafpour G, Ideris A, Salmanpour S, Norouzi M (2007) Acid hydrolysis of pretreated palm lignocellulosic wastes. Int J Eng Transact B Appl 20:147–156

    Google Scholar 

  • Pandey JK, Lee CS, Ahn SH (2010) Preparation and properties of bio-nanoreinforced composites from biodegradable polymer matrix and cellulose whiskers. J Appl Polym Sci 115:2493–2501

    Article  CAS  Google Scholar 

  • Pouget JP, Józefowicz ME, Epstein JA, Tang X, Macdiarmid AG (1991) X-ray structure of polyaniline. Macromolecules 24:779–789

    Article  CAS  Google Scholar 

  • Quintero-Ramirez R (2008) Hydrolysis of lignocellulosic biomass. http://www.apta.sp.gov.br/cana/anexos/paper_quintero_Brasil.pdf. Accessed 17 November 2010

  • Ramires EC, Megiatto JD Jr, Gardrat C, Castellan A, Frollini E (2010) Biobased composites from glyoxal-phenolic resins and sisal fibers. Bioresour Technol 101:1998–2006

    Article  CAS  Google Scholar 

  • Ramos LA, Assaf JM, El Seoud OA, Frollini E (2005) Influence of the supra-molecular structure and physico-chemical properties of cellulose on its dissolution in the lithium chloride/N, N-dimethylacetamide solvent system. Biomacromolecules 6:2638–2647

    Article  CAS  Google Scholar 

  • Ramos LA, Morgado DL, El Seoud OA, Silva VC, Frollini E (2011) Acetylation of cellulose in LiCl-N, N-dimethylacetamide: first report on the correlation between the reaction efficiency and the aggregation number of dissolved cellulose. Cellulose 18:385–392

    Article  CAS  Google Scholar 

  • Rodrigues FA, Guirardello R (2008) Evaluation of a sugarcane bagasse acid hydrolysis technology. Chem Eng Technol 31:883–892

    Article  CAS  Google Scholar 

  • Romero I, Ruiz E, Castro E, Moya M (2010) Acid hydrolysis of olive tree biomass. Chem Eng Res Des 88:633–640

    Article  CAS  Google Scholar 

  • Saeman JF, Bubl JL, Harris EE (1945) Quantitative saccharification of wood and cellulose. J Ind Eng Chem 17:35–37

    CAS  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  CAS  Google Scholar 

  • Schmer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. Proceedings of the national academy of sciences of the United States of America, January 15, 105:464–469

  • Silva NLC, Betancur GJV, Vasquez MP, Gomes EB, Pereira N Jr (2011) Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process. Appl Biochem Biotechnol 163:928–936

    Article  CAS  Google Scholar 

  • Siqueira G, Tapin-Lingua S, Bras J, Perez DS, Dufresne A (2011) Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 18:57–65

    Article  CAS  Google Scholar 

  • Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  • TAPPI PRESS (2001) Alpha-cellulose in paper T429 cm-01

  • TAPPI PRESS (2008) Viscosity of pulp (capillary viscometer method) T230 om-08

  • Téllez-Luis SJ, Ramirez JA, Vazquez M (2002) Modelling of the hydrolysis of sorghum straw at atmospheric pressure. J Sci Food Agric 82:505–512

    Article  Google Scholar 

  • Tian J, Wang J, Zhao S, Jiang C, Zhang X, Wang X (2010) Hydrolysis of cellulose by the heteropoly acid H3PW12O40. Cellulose 17:587–594

    Article  CAS  Google Scholar 

  • Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102:7119–7123

    Article  CAS  Google Scholar 

  • Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Ann Rev Energy Environ 24:189–226

    Article  Google Scholar 

  • Xiang Q, Kim JS, Lee YY (2003) A comprehensive kinetic model for dilute-acid hydrolysis of cellulose. Appl Biochem Biotechnol 105–108:337–352

    Article  Google Scholar 

  • Xiang Q, Lee YY, Torget RW (2004) Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass. Appl Biochem Biotechnol 113–116:1127–1138

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge CAPES (Coordination for the Improvement of Higher Level -or Education- Personnel, Brazil) for a fellowship for M.P.P and T.M.L. and FAPESP (The State of São Paulo Research Foundation, Brazil) for financial support. E.F. is grateful to CNPq (National Research Council, Brazil) for a research productivity fellowship and for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabete Frollini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Paula, M.P., Lacerda, T.M., Zambon, M.D. et al. Adding value to the Brazilian sisal: acid hydrolysis of its pulp seeking production of sugars and materials. Cellulose 19, 975–992 (2012). https://doi.org/10.1007/s10570-012-9674-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9674-8

Keywords

Navigation