Skip to main content
Log in

Molecular simulation study with complex models of the carbohydrate binding module of Cel6A and the cellulose Iα crystal

Cellulose Aims and scope Submit manuscript

Abstract

A computer docking study was carried out on the (110) crystal surface of the cellulose Iα crystal model for the carbohydrate binding module (CBM) of cellobiohydrolase Cel6A, which is produced by the filamentous fungus Trichoderma reesei. Three-dimensional structures of the CBM were constructed by the homology modeling method using the Cel7A CBM, which is another cellobiohydrolase from T. reesei, as a template, and refined by molecular dynamics calculations in the solution state. Among the three models tested, those with three disulfide bonds were selected for a docking analysis. The binding free energy maps represented changes in non-covalent interactions and solvation free energies with respect to the CBM position. These indicated two minimum positions within the unit cell for both the parallel and antiparallel orientation modes of the CBM with respect to the cellulose fiber axis. Molecular dynamics calculations under an explicit solvent system were performed for the four complex models derived from the minimum positions of the binding free energy maps. The complex models with CBM in the parallel orientation had the lowest binding energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Basma M, Sundara S, Calgan D, Venali T, Woods RJ (2001) Solvated ensemble averaging in the calculation of partial atomic charges. J Comput Chem 22:1125–1137

    Article  CAS  Google Scholar 

  • Beckham GT, Matthews JF, Bomble YJ, Bu L, Adney WS, Himmel ME, Nimlos MR, Crowley MF (2010) Identification of amino acids responsible for processivity in a family 1 carbohydrate-binding module from a fungal cellulase. J Phys Chem B 114:1447–1453

    Article  CAS  Google Scholar 

  • Bu L, Beckham GT, Chang CH, Matthews JF, Bomble YJ, Adney WS, Himmel ME, Nimlos MR (2009) The energy landscape for the interaction of the family 1 carbohydrate-binding module and the cellulose surface is altered by hydrolyzed glycosidic bonds. J Phys Chem B 113:10994–11002

    Article  CAS  Google Scholar 

  • Carrard G, Linder M (1999) Widely different off rates of two closely related cellulose-binding domains from Trichoderma reesei. Eur J Biochem 262:637–643

    Article  CAS  Google Scholar 

  • Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  • Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  • Chanzy H, Henrissat B (1985) Undirectional degradation of Valonia cellulose microcrystals subjected to cellulase action. FEBS Lett 184:285–288

    Article  CAS  Google Scholar 

  • Essmann U, Pereta L, Berkowitz ML, Darden TA, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Hawkins GD, Cramer CJ, Truhlar DG (1995) Pairwise solute descreening of solute charges from a dielectric medium. Chem Phys Lett 246:122–129

    Article  CAS  Google Scholar 

  • Hawkins GD, Cramer CJ, Truhlar DG (1996) Parametrized models of aqueous free energies of solvation based on pairwise descreening of solute atomic charges from a dielectric medium. J Phys Chem 100:19824–19839

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  • Imai T, Boisset C, Samejima M, Igarashi K, Sugiyama J (1998) Unidirectional processive action of cellobiohydrolase Cel7A on Valonia cellulose microcrystals. FEBS Lett 432:113–116

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura J, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kirchner KN, Woods RJ (2001a) Solvent interactions determine carbohydrate conformation. Proc Natl Acad Sci USA 98:10541–10545

    Article  Google Scholar 

  • Kirchner KN, Woods RJ (2001b) Quantum mechanical study of the nonbonded forces in water-methanol complexes. J Phys Chem A 105:4150–4155

    Article  Google Scholar 

  • Kraulis J, Clore GM, Nilges M, Jones TA, Pattersson G, Knowles J, Gronenborn AM (1989) C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28:7241–7257

    Article  CAS  Google Scholar 

  • Linder M, Teeri TT (1996) The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Proc Natl Acad USA 93:12251–12255

    Article  CAS  Google Scholar 

  • Luo R, David L, Gilson MK (2002) Accelerated Poisson–Boltzmann calculations for static and dynamic systems. J Comput Chem 23:1244–1253

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diagram. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Penttilä M, Lehtovaara P, Nevalainen H, Bhikhabnai R, Knowles J (1986) Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45:253–263

    Article  Google Scholar 

  • Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JK, Teeri TT (1992) Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins 14:475–482

    Article  CAS  Google Scholar 

  • Ryckaert JP, Cicotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Săli A, Blundell L (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  Google Scholar 

  • Sinnott ML (1998) The cellobiohydrolases of Trichoderma reesei: a review of indirect and direct evidence that their function is not just glycosidic bond hydrolysis. Biochem Soc Trans 26:160–164

    CAS  Google Scholar 

  • Teeri TT, Lehtovaara P, Kauppinen S, Salovuori I, Knowles J (1987) Homologous domains in Trichoderma reesei cellulolytic enzymes: gene sequence and expression of cellobiohydrolase II. Gene 51:43–52

    Article  CAS  Google Scholar 

  • Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys Rev 159:98–103

    Article  CAS  Google Scholar 

  • Wang J, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  • Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 20:217–230

    Article  CAS  Google Scholar 

  • Wood TM (1992) Fungal cellulases. Biochem Soc Trans 20:46–53

    CAS  Google Scholar 

  • Yui T, Hayashi S (2007) Molecular dynamics simulations of solvated crystal models of cellulose Iα and IIII. Biomacromolecules 8:817–824

    Article  CAS  Google Scholar 

  • Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530

    Article  CAS  Google Scholar 

  • Yui T, Shiiba H, Tsutsumi Y, Hayashi S, Miyata T, Hirata F (2010) Systematic docking study of the carbohydrate binding module protein of Cel7A with the cellulose Iα crystal model. J Phys Chem B 114:49–58

    Article  CAS  Google Scholar 

  • Zhong L, Matthews JF, Crowley MF, Rignall T, Talón C, Cleary JM, Walker RC, Chukkapalli G, McCabe C, Nimlos MR, Brooks CL III, Himmel ME, Brady JW (2008) Interactions of the complete cellobiohydrolase I from Trichodera reesei with microcrystalline cellulose Iβ. Cellulose 15:261–273

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Strategic Research Promotion Fund 2006–2014 administered by the Ministry of Education, Culture, Sports, Science and Techonology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiiba, H., Hayashi, S. & Yui, T. Molecular simulation study with complex models of the carbohydrate binding module of Cel6A and the cellulose Iα crystal. Cellulose 19, 635–645 (2012). https://doi.org/10.1007/s10570-012-9671-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9671-y

Keywords

Navigation