Skip to main content
Log in

Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The microstructure and chemical composition of alfa (Stipa tenacissima) were investigated. The polysaccharide and lignin contents were around 70 and 20 wt%, respectively. From the bleached and delignified fibers, two types of nanosized cellulosic particles were extracted, namely cellulose nanocrystals and microfibrillated cellulose (MFC). The former correspond typically to the elementary crystallite units of the cellulose fibers, with a rod-like morphology and an aspect ratio of about 20. The latter, mechanically disintegrated from oxidized bleached fibres, presents an entangled fibrillar structure with widths in the range 5-20 nm. The reinforcing potential of the ensuing nanoparticles was investigated by casting a mixture of acrylic latex and aqueous dispersion of cellulose nanoparticles. Thermo-mechanical analysis revealed a huge enhancement of the stiffness above the glass transition of the matrix. Significant differences in the mechanical reinforcing capability of the nanoparticles were reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  Google Scholar 

  • Ben Brahim S, Ben Cheikh R (2007) Influence of fiber orientation and volume fraction on the tensile properties of unidirectional Alfa polyester composite. Compos Sci Technol 67:140–147

    Article  CAS  Google Scholar 

  • Bendahou A, Habibi Y, Kaddami H, Dufresne A (2009) Physico-chemical characterization of palm from phoenix dactylifera–L, preparation of cellulose whiskers and natural rubber–based nanocomposites. J Biobased Mat Bioenerg 3:1–10

    Article  Google Scholar 

  • Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46:609–620

    Article  CAS  Google Scholar 

  • Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84:975–983

    Article  CAS  Google Scholar 

  • Bessadok A, Marais S, Gouanve F, Colasse L, Zimmerlin I, Roudesli S, Métayer M (2007) Effect of chemical treatments of alfa (Stipa tenacissima) fibres on water-sorption properties. Compos Sci Technol 67:685–697

    Article  CAS  Google Scholar 

  • Bouiri B, Amrani M (2009) Production of dissolving grade pulp from alfa. BioResources 5:291–302

    Google Scholar 

  • Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Col Surf A 325:44–51

    Article  CAS  Google Scholar 

  • de Souza Lima M, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Comm 25:771–774

    Article  Google Scholar 

  • Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interfaces 7:53–67

    Article  CAS  Google Scholar 

  • Dufresne A (2008) Polysaccharide nanocrystals reinforced nanocomposites. Can J Chem 86:484–494

    Article  CAS  Google Scholar 

  • Frisch HL, Mark EJ (1996) Nanocomposites prepared by threading polymer chains through zeolites, mesoporous silica, or silica nanotubes. Chem Mater 8:1735–1738

    Article  CAS  Google Scholar 

  • Goetz L, Mathew A, Oksman K, Gatenholm P, Ragauskas AJ (2009) A novel nanocomposite film prepared from crosslinked cellulosic whiskers. Carbohydr Polym 75:85–89

    Article  CAS  Google Scholar 

  • Harris PJF (2004) Carbon nanotube composites. Int Mater Rev 49:31–43

    Article  CAS  Google Scholar 

  • Kaddami H, Gérard JF, Pascault JP (2004) Influence of the initiation rate on the polymerization kinetics of hydroxy ethyl methacrylate (HEMA) filled with HEMA-grafted silica preformed nanoparticles. Polym Eng Sci 44:1231–1939

    Article  CAS  Google Scholar 

  • Kaddami H, Becker-Villinger C, Schmidt H (2006) Monitoring morphology and properties of hybrid organic-inorganic materials from in situ polymerization of tetraethoxysilane in polyimide polymer: 1) effect of the coupling agent on the microstructure and interfacial interaction. E-Polymers 10:1–10

    Google Scholar 

  • Khiari R, Mhenni MF, Belgacem MN, Mauret E (2010) Chemical composition and pulping of date palm rachis and Posidonia oceanica – A comparison with other wood and non-wood fibre sources. Biores Technol 101:775–780

    Article  CAS  Google Scholar 

  • Lau KT, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Composites B 37:425–436

    Article  Google Scholar 

  • Motomatsu M, Takahashi T, Nie HY, Mizutani W, Tokumoto H (1997) Microstructure study of acrylic polymer-silica nanocomposite surface by scanning force microscopy. Polymer 38:177–182

    Article  CAS  Google Scholar 

  • Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O (1990) Nylon 6-clay hybrid. Mater Res Soc Proc 171:45–50

    Article  CAS  Google Scholar 

  • Paiva MC, Ammar I, Campos AR, Ben Cheikh R, Cunha AM (2007) Alfa fibers: mechanical, morphological and interfacial characterization. Compos Sci Technol 67:1132–1138

    Article  CAS  Google Scholar 

  • Pit Z, Mark EJ, Jethmalani JM, Ford WT (1996) Mechanical properties of a poly(methvl acrvlate) nanocomposite containing regularly-arranged silica particles. Polym Bull 37:545–551

    Article  Google Scholar 

  • Röser M, Heklau H (2011) Abscission of leaf laminas—an unnoticed factor in tussock grass formation. Flora 206:32–37

    Article  Google Scholar 

  • Ruckenstein E, Yuan Y (1997) Nanocomposites of rigid polyamide dispersed in flexible vinyl. Polymer 38:3855–3860

    Article  CAS  Google Scholar 

  • Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromolecules 10:1992–1996

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimation the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Res J 29:786–794

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Luffa cylindrica as a lignocellulosic source of fiber, microfibrillated cellulose, and cellulose nanocrystals. BioResources 5727–740

  • Sirò I, Plackett D (2010) Microfibrillated cellulose and new nanocomposites materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  • Terre et Vie (2002), L’Alfa : Importance écologique et socio-économique, N° 61–62. (http://www.terrevie.ovh.org/Alfa.pdf)

Download references

Acknowledgments

The authors thank for their financial support Hassan II Academy of Sciences and Techniques, the French Ministry of Foreign Affairs (Corus program 6046), the PHC-UTIQUE (Grant 11/G 1115) and the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Dufresne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mabrouk, A.B., Kaddami, H., Boufi, S. et al. Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose 19, 843–853 (2012). https://doi.org/10.1007/s10570-012-9662-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9662-z

Keywords

Navigation