, Volume 19, Issue 2, pp 401–410 | Cite as

Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids

  • Nicholas Tchang CervinEmail author
  • Christian Aulin
  • Per Tomas Larsson
  • Lars Wågberg


A novel type of sponge-like material for the separation of mixed oil and water liquids has been prepared by the vapour deposition of hydrophobic silanes on ultra-porous nanocellulose aerogels. To achieve this, a highly porous (>99%) nanocellulose aerogel with high structural flexibility and robustness is first formed by freeze-drying an aqueous dispersion of the nanocellulose. The density, pore size distribution and wetting properties of the aerogel can be tuned by selecting the concentration of the nanocellulose dispersion before freeze-drying. The hydrophobic light- weight aerogels are almost instantly filled with the oil phase when selectively absorbing oil from water, with a capacity to absorb up to 45 times their own weight in oil. The oil can also be drained from the aerogel and the aerogel can then be reused for a second absorption cycle.


Absorption Aerogel Cellulose Desorption Oleophilic Separation Superhydrophobic 



The authors thank Wallenberg Wood Science Center for financial support. Professor Lars G. Ödberg is acknowledged for valuable discussions and Magnus Hillergren for professional help with the high speed camera. Joanna Hornatowska at Innvenita AB is acknowledged for the tomography measurements and Innventia AB is thanked for supplying NFC. Dr. Andrei Shchukarev at Umeå University is acknowledged for performing the XPS experiments.

Supplementary material

10570_2011_9629_MOESM1_ESM.doc (22 kb)
Movies on oil absorption (Hexadecane) and high speed camera of an oil drop (Hexadecane) absorbed in the aerogel are available free of charge. Supplementary material 1 (DOC 22 kb)

Supplementary material 2 (MPG 46509 kb)

Supplementary material 3 (MOV 181459 kb)

Supplementary material 4 (MPG 68278 kb)

Supplementary material 5 (AVI 1646661 kb)


  1. Aulin C, Johansson E, Wagberg L, Lindstrom T (2010a) Self-organized films from cellulose I nanofibrils using the layer-by-layer technique. Biomacromolecules 11(4):872–882. doi: 10.1021/bm100075e CrossRefGoogle Scholar
  2. Aulin C, Netrval J, Wagberg L, Lindstrom T (2010b) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6(14):3298–3305CrossRefGoogle Scholar
  3. Cervin NT, Aulin C, Wagberg L, Larsson T (2011) Hydrophobic aerogels from nanofibrillated cellulose (NFC) with tunable oleophilicity. Abstracts of Papers of the American Chemical Society, vol 241. p 81Google Scholar
  4. Eichhorn SJ, Sampson WW (2010) Relationships between specific surface area and pore size in electrospun polymer fibre networks. J R Soc Interface 7(45):641–649. doi: 10.1098/rsif.2009.0374 CrossRefGoogle Scholar
  5. Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6):1579–1585. doi: 10.1021/bm800038n CrossRefGoogle Scholar
  6. Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci 37:797–813Google Scholar
  7. Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225(1–3):335–342. doi: 10.1016/s0022-3093(98)00135-5 CrossRefGoogle Scholar
  8. Kettunen M, Silvennoinen RJ, Houbenov N, Nykanen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindstrom T, Ritala M, Ras RHA, Ikkala O (2011) Photoswitchable superabsorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517. doi: 10.1002/adfm.201001431 CrossRefGoogle Scholar
  9. Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816CrossRefGoogle Scholar
  10. Miller B, Tyomkin I (1994) Liquid porosimetry—new methodology and applications. J Colloid Interface Sci 162(1):163–170. doi: 10.1006/jcis.1994.1021 CrossRefGoogle Scholar
  11. Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A-Mater Sci Process 78(4):547–552. doi: 10.1007/s00339-003-2453-5 CrossRefGoogle Scholar
  12. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindstrom T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941CrossRefGoogle Scholar
  13. Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492–2499. doi: 10.1039/b810371b CrossRefGoogle Scholar
  14. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24(9):3221–3227CrossRefGoogle Scholar
  15. Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B (1998) Carbon aerogels for electrochemical applications. J Non-Cryst Solids 225(1):74–80CrossRefGoogle Scholar
  16. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691. doi: 10.1021/bm060154s CrossRefGoogle Scholar
  17. Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6(8):1824–1832. doi: 10.1039/b927505c CrossRefGoogle Scholar
  18. Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432. doi: 10.1021/bm801193d CrossRefGoogle Scholar
  19. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci 37:815–827Google Scholar
  20. Wagberg L, Decher G, Norgren M, Lindstrom T, Ankerfors M, Axnas K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795CrossRefGoogle Scholar
  21. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17(2):153–155. doi: 10.1002/adma.200400597 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Nicholas Tchang Cervin
    • 1
    Email author
  • Christian Aulin
    • 1
    • 2
  • Per Tomas Larsson
    • 1
    • 2
    • 3
  • Lars Wågberg
    • 1
    • 2
    • 3
  1. 1.Wallenberg Wood Science CenterKTH Royal Institute of TechnologyStockholmSweden
  2. 2.Innventia ABStockholmSweden
  3. 3.Department of Fibre and Polymer Technology, School of Chemical Science and EngineeringKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations