Skip to main content
Log in

Immobilization of lipase onto cellulose ultrafine fiber membrane for oil hydrolysis in high performance bioreactor

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Practical application of biphasic enzyme-immobilized membrane bioreactors (EMBR) requires efficient loading of the enzyme with retention of enzymatic activity. Here, we report a method to fabricate an ultrafine fiber membrane conjugated to lipase with high levels of enzyme loading and activity retention. A cellulose acetate (CA) non-woven ultrafine fiber membrane was prepared with 200 nm nominal fiber diameter by electrospinning, followed by alkaline hydrolysis to obtain regenerated cellulose (RC). The RC ultrafine fiber membrane was oxidized by exposure to NaIO4, simultaneously generating aldehyde groups to couple with pentaethylenehexamine (PEHA) as a spacer for lipase immobilization. A biphasic EMBR was assembled with the PEHA-modified and lipase-immobilized membranes. The effect of operation variables, namely aqueous-phase system, reaction pH, accelerant (sodium taurocholate) content, reaction temperature, and membrane usage on the performance of this bioreactor was investigated with the hydrolysis of olive oil. A bioreactor activity as high as 9.83 × 104 U/m2 was obtained under optimum operational conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal S, Greiner A, Wendroff JH (2009) Electrospinning of manmade and biopolymer nanofibers-progress in techniques, materials, and applications. Adv Funct Mater 19:7198–7201

    Article  Google Scholar 

  • Aryee ANA, Simpson BK, Villalonga R (2007) Lipase fraction from the viscera of grey mullet (Mugil cephalus)—isolation, partial purification and some biochemical characteristics. Enzyme Microb Technol 40:394–402

    Article  CAS  Google Scholar 

  • Becher J, Liebegott H, Berlin P, Klemm D (2004) Novel xylylene diaminocellulose derivatives for enzyme immobilization. Cellulose 11:119–126

    Article  CAS  Google Scholar 

  • Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:1315–1338

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dyebinding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bryjak J, Liesiene J, Stefuca V (2008) Man-tailored cellulose-based carriers for invertase immobilization. Cellulose 15:631–640

    Article  CAS  Google Scholar 

  • Brzozowski AM, Derewenda U, Derewenda ZS, Dodson GG, Lawson DM, Turkenburg JP, Bjorkling F, Huge-Jensen B, Patkar SA, Thim L (1991) A model for interfacial activation in lipases from the structure of a fungal lipase inhibitor complex. Nature 351:491–494

    Article  CAS  Google Scholar 

  • Bulmuş V, Kesenci K, Pişkin E (1998) Poly(EGDMA/AAm) copolymer beads: a novel carrier for enzyme immobilization. React Funct Polym 38:1–9

    Article  Google Scholar 

  • Compton DL, Laszlo JA, Berhow MA (2006) Identification and quantification of feruloylated mono-, di-, and triacylglycerols from vegetable oils. J Am Oil Chem Soc 83:753–758

    Article  CAS  Google Scholar 

  • Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 1. Cellulose. Cellulose 17:875–889

    Article  CAS  Google Scholar 

  • Deng HT, Xu ZK, Dai ZW, Wu J, Seta P (2005) Immobilization of Candida rugosa lipase on polypropylene microfiltration membrane modified by glycopolymer: hydrolysis of olive oil in biphasic bioreactor. Enzyme Microb Technol 36:996–1002

    Article  CAS  Google Scholar 

  • Garcia-Urdiales E, Rios-Lombardia N, Mangas-Sanchez J, Gotor-Fernandez V, Gotor V (2009) Influence of the nucleophile on the Candida antarctica lipase B-catalysed resolution of a chiral acyl donor. Chembiochem 10:1830–18838

    Article  CAS  Google Scholar 

  • Gargouri Y, Piéroni G, Riviére C, Srada L, Verger R (1986) Inhibition of lipases by proteins: a binding study using dicaprin monolayers. Biochemistry 25:1733–1738

    Article  CAS  Google Scholar 

  • Huang XJ, Xu ZK, Wan LS, Innocent C, Seta P (2006) Electrospun nanofibers modified with phospholipid moieties for enzyme immobilization. Macromol Rapid Commun 27:1341–1345

    Article  CAS  Google Scholar 

  • Huang XJ, Ge D, Xu ZK (2007) Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur Polym J 43:3710–3718

    Article  CAS  Google Scholar 

  • Huang XJ, Yu AG, Xu ZK (2008) Covalent immobilization of lipase from Candida rugosa onto ploy(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour Technol 99:5459–5465

    Article  CAS  Google Scholar 

  • Huang XJ, Yu AG, Jiang J, Pan C, Qian JW, Xu ZK (2009) Surface modification of nanofibrous poly(acrylonitrile-co-acrylic acid) membrane with biomacromolecules for lipase immobilization. J Mol Catal B Enzym 57:250–256

    Article  CAS  Google Scholar 

  • Huang XJ, Chen PC, Huang F, Ou Y, Chen MR, Xu ZK (2011) Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B Enzym 70:95–100

    Article  CAS  Google Scholar 

  • Jiao TF, Leca-Bouvier BD, Boullanger P, Blum LJ, Girard-Egrot AP (2010) A chemiluminescent langmuir-Blodgett membrane as the sensing layer for the reagentless monitoring of an immobilized enzyme activity. Colloids Surf A 254:284–290

    Article  Google Scholar 

  • Kosaka PM, Kawano Y, El Seoud OA, Petri DFS (2007) Catalytic activity of lipase immobilized onto ultrathin films of cellulose esters. Langmuir 23:12167–12173

    Article  CAS  Google Scholar 

  • Lee CC, Chiang HP, Li KL, Ko FH, Su CY, Yang YS (2009) Surface reaction limited model for the evaluation of immobilized enzyme on planar surfaces. Anal Chem 81:2737–2744

    Article  CAS  Google Scholar 

  • Liu CH, Chang JS (2008) Lipolytic activity of suspended and membrane immobilized lipase originating from indigenous Burkholderia sp. C20. Bioresour Technol 99:1616–1622

    Article  CAS  Google Scholar 

  • Liu HQ, Hsieh YL (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys 40:2119–2129

    Article  CAS  Google Scholar 

  • Liu HQ, Hsieh YL (2003) Surface methacrylation and graft copolymerization of ultrafine cellulose fibers. J Polym Sci Part B Polym Phys 41:953–964

    Article  CAS  Google Scholar 

  • Lu P, Hsieh YL (2010) Layer-by-layer self-assembly of Cibacron Blue F3GA and lipase on ultra-fine cellulose fibrous membrane. J Membr Sci 348:21–27

    Article  CAS  Google Scholar 

  • Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777

    Article  CAS  Google Scholar 

  • Ozyilmaz G (2009) The effect of spacer arm on hydrolytic and synthetic activity of Candida rugosa lipase immobilized on silica gel. J Mol Catal B Enzym. 56:231–236

    Article  CAS  Google Scholar 

  • Ragupathy L, Pluhar B, Ziener U, Keller H, Dyllick-Brenzinger R, Landfester K (2010) Enzymatic aminolysis of lactones in aqueous miniemulsion: catalysis through a novel pathway. J Mol Catal B Enzym 62:270–276

    Article  CAS  Google Scholar 

  • Son WK, Youk JH, Lee TS, Park WH (2004a) Electrospinning of ultrafine cellulose acetate fibers: studies of a new solvent system and deacetylation of ultrafine cellulose acetate fibers. J Polym Sci Part B Polym Phys 42:5–11

    Article  CAS  Google Scholar 

  • Son WK, Youk JH, Park WH (2004b) Preparation of ultrafine oxidized cellulose mats via electrospinning. Biomacromolecules 5:197–201

    Article  CAS  Google Scholar 

  • Verger R (1997) Interfacial activation of lipase: facts and artifacts. Trends Biotechnol 15:32–38

    Article  CAS  Google Scholar 

  • Wait AF, Parkin A, Morley GM, dos Santos L, Armstrong FA (2010) Characteristics of enzyme-based hydrogen fuel cells using an oxygen-tolerant hydrogenase as the anodic catalyst. J Phys Chem C 114:12003–12009

    Article  CAS  Google Scholar 

  • Wang CS, Hartsuck JA (1993) Bile salt-activated lipase: a multiple function lipolytic enzyme. Biochim Biophys Acta 1166:1–19

    CAS  Google Scholar 

  • Wang CS, Lee M (1985) Kinetic properties of human milk bile salt-activated lipases: studies using long chain triacylglycerol as substrate. J Lipid Res 26:824–830

    CAS  Google Scholar 

  • Wang ZG, Xu ZK, Wan LS, Wu J, Innocent C, Seta P (2006) Nanofibrous membranes containing carbon nanotubes: electrospun for redox enzyme immobilization. Macromol Rapid Commun 27:516–521

    Article  Google Scholar 

  • Wang YJ, Xu J, Luo GS, Dai YY (2008) Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface. Bioresour Technol 99:2299–2303

    Article  CAS  Google Scholar 

  • Wang ZG, Wan LS, Liu ZM, Huang XJ, Xu ZK (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Catal B Enzym 56:189–195

    Article  CAS  Google Scholar 

  • Wu AC, Wang PY, Lin YS, Kao MF, Chen JR, Ciou JF, Tsai SW (2010) Improvements of enzyme activity and enantioselectivity in lipase-catalyzed alcoholysis of (R, S)-azolides. J Mol Catal B Enzym 62:235–241

    Article  CAS  Google Scholar 

  • Ye P, Xu ZK, Che AF, Wu J, Seta P (2005) Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization. Biomaterials 26:6394–6403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Grant No. 50703034), the Opening Foundation of Zhejiang Provincial Top Key Discipline (Grant No. 20110915) and the High-Tech Research and Development Program of China (Grant No. 2007AA10Z301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1,075 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, PC., Huang, XJ., Huang, F. et al. Immobilization of lipase onto cellulose ultrafine fiber membrane for oil hydrolysis in high performance bioreactor. Cellulose 18, 1563–1571 (2011). https://doi.org/10.1007/s10570-011-9593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9593-0

Keywords

Navigation