Skip to main content
Log in

Cellulose nanofibres by sonocatalysed-TEMPO-oxidation

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The purpose of this work was to study the influence of acoustic cavitation on the oxidation of a mill bleached machine dried hardwood Kraft pulp. The oxidation of the pulp was carried out using 4-acetamido-TEMPO coupled with NaOCl/NaBr as co-oxidizer. The carboxylate content was increased by about 30% without any adverse impact on the degree of polymerization in the case of oxidations under acoustic cavitation compared to the reference without acoustic cavitation. A close correlation between the yield of nanocellulose and the carboxylate content of the oxidized pulps was observed. The individualized cellulose nanofibres were 3–4 nm in width and a few microns in length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akiya S, Okui S (1951) Promotion of chemical reactions by supersonic waves. J Pharm Soc Jpn 71:182–184

    CAS  Google Scholar 

  • Anasts PT, Williamson TC (Eds) (1998) Green chemistry oxford university press, Oxford

  • Berth G, Dautzenberg H, Christensen BE, Harding SE, Rother G, Smidosrod O (1996) Static light scattering studies on xanthan in aqueous solutions. Macromolecules 29:3491–3498

    Article  CAS  Google Scholar 

  • Besemer AC, Van Bekkum H (1994) Dicarboxy-starch by sodium hypochlorite/bromide oxidation and its calcium binding properties. Starch 46:95–101

    Article  CAS  Google Scholar 

  • Besemer AC, Van Bekkum H (1996) Carbohydrates as raw materials III. VCH, Weinheim, p 273

    Book  Google Scholar 

  • Bragd PL, Besemer AC, van Bekkum H (2001) TEMPO-derivatives as catalysts in the oxidation of primary alcohol groups in carbohydrates. J Mol Catal 170:35–42

    Article  CAS  Google Scholar 

  • Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27:49–66

    Article  CAS  Google Scholar 

  • Brochette-Lemoine S, Joannard D, Descotes G, Bouchu A, Queneau Y (1999) Sonocatalysis of the TEMPO-mediated oxidation of glucosides. J Mol Catal A Chem 150:31–36

    Article  CAS  Google Scholar 

  • Brochette-Lemoine S, Trombotto S, Joannard D, Descotes G, Bouchu A, Queneau Y (2000) Ultrasound in carbohydrate chemistry: sonophysical glucose oligomerisation and sonocatalysed sucrose oxidation. Ultrason Sonochem 7:157–161

    Article  CAS  Google Scholar 

  • Chang PS, Robyt JFJ (1996) Oxidation of primary alcohol groups of naturally occurring polysaccharides with 2,2,6,6-tetramethyl-1-piperidine oxoammonium ion. J Carbohydr Chem 15:819–830

    Article  CAS  Google Scholar 

  • Chen RH, Chang JR, Shyur JS (1997) Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohdr Res 299(4):287–294

    Article  CAS  Google Scholar 

  • Choi JH, Kim SB (1994) Effect of ultrasound on sulfuric acid-catalysed hydrolysis of starch. Korean J Chem Eng 11(3):178–184

    Article  CAS  Google Scholar 

  • Descotes G, Queneau Y (1998) Carbohydrates as organics raw materials IV. In: Praznik W, Huber A (eds) Microwaves and ultrasound in carbohydrate chemistry. WUV, Wien, pp 39–63

    Google Scholar 

  • Edye LA, Meehan GV, Richards GN (1994) Influence of temperature and pH on the platinum catalysed oxidation of sucrose. J Carbohydr Chem 13(2):273–283

    Article  CAS  Google Scholar 

  • Flosdorf EW, Chambers LA (1933) The chemical action of audible sound. J Am Chem Soc 55:3051–3052

    Article  CAS  Google Scholar 

  • Gräfe G (1953) D-Glucuronic acid and its preparation from starch. Starch 5:205–209

    Article  Google Scholar 

  • Hamilton GA, De Jersey J, Adolf PK (1973) Oxidases and related Redox systems. University Park Press, Baltimore, p 103

    Google Scholar 

  • Hozokawa M, Yagi H, Naito K (1958) Method for preparing di-acetone-L-sorbose. US Patent 2 849 355

    Google Scholar 

  • Isogai A, Kato Y (1998) Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose 5(3):153–164

    Article  CAS  Google Scholar 

  • Iwasaki T, Lindberg B, Meier H (1962) The effect of ultrasonic treatment on individual wood fibers. Svensk Papperstidn 65(20):795–816

    CAS  Google Scholar 

  • Johnson RK, Zink-Sharp A, Renneckar SH, Glasser WG (2009) A new bio-based nanocomposite: fibrillated TEMPO-oxidized celluloses in hydroxypropylcellulose matrix. Cellulose 16:227–238

    Article  CAS  Google Scholar 

  • Kardos N, Luche J-L (2001) Sonochemistry of carbohydrate compounds. Carbohydr Res 332:115–131

    Article  CAS  Google Scholar 

  • Katz S, Beatson RP, Scallan AM (1984) The determination of strong and weak acidic groups in sulfite pulps. Svensk Papperstidn 87(6):R48–R53

    CAS  Google Scholar 

  • Kitaoka T, Isogai A, Onabe F (1999) Chemical modification of pulp fibers by TEMPO-mediated oxidation. Nordic Pulp Paper Res J 14:279–284

    Article  CAS  Google Scholar 

  • Laine JE, Goring DA (1997) Influence of ultrasonic irradiation on the properties of cellulosic fibers. Cellulose Chem Technol 11:561–567

    Google Scholar 

  • Lemoine S, Thomazeau C, Joannard D, Trombotto S, Descotes G, Bouchu A, Queneau Y (2000) Sucrose tricarboxylate by sonocatalysed TEMPO-mediated oxidation. Carbohydr Res 326:176–184

    Article  CAS  Google Scholar 

  • Levlin JE, Söderbjelm L (1998) Pulp and paper testing. Papermak Sci Technol 17(6):115–116

    Google Scholar 

  • Manning A, Thompson R (2002) The influence of ultrasound on virgin paper fibers. Prog Paper Recycl 11:6–12

    CAS  Google Scholar 

  • Mason TJ (1990–1999) Advances in sonochemistry. JAI Press, London UK and Greenwich CT

  • Mason TJ, Lorimer JP (2002) Applied sonochemistry, the uses of power ultrasound in chemistry & processing. Wiley VCH, Weinheim

    Google Scholar 

  • Mishra SP, Thirree J, Manent A-S, Chabot B, Daneault C (2011) Ultrasound-catalyzed TEMPO-mediated oxidation of native cellulose for the production of nanocellulose: effect of process variables. BioRes 6(1):121–143

    CAS  Google Scholar 

  • Parpot P, Kokoh KB, Beden B, Balgsir EM, Leger JM, Lamy C (1993a) Selective electrocatalytic oxidation of sucrose on smooth and upd-lead modified platinum electrodes in alkaline medium. Stud Surf Sci Catal 78:439–445

    Article  CAS  Google Scholar 

  • Parpot P, Kokoh KB, Beden B, Lamy C (1993b) Electrocatalytic oxidation of saccharose in alkaline medium. Electrochim Acta 38(12):1679–1683

    Article  CAS  Google Scholar 

  • Richards WT, Loomis AL (1927) The chemical effects of high frequency sound waves I. A preliminary survey. J Am Chem Soc 49(12):3086–3100

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2006) Introduction of aldehyde groups on surfaces of native cellulose fibers by TEMPO-mediated oxidation. Colloids Surf A Physicochem Eng Aspects 289:219–225

    Article  CAS  Google Scholar 

  • Saito T, Yanagisawa M, Isogai A (2005) TEMPO-mediated oxidation of native cellulose: SEC-MALLS analysis of water-soluble and -insoluble fractions in the oxidized products. Cellulose 12(3):305–315

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibres prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  CAS  Google Scholar 

  • Sakakibara M, Wang D, Ikeda K, Suzuki K (1994) Effect of ultrasonic irradiation on production of fermented milk with Lactobacillus delbrueckii. Ultrason Sonochem 1:S107–S110

    Article  Google Scholar 

  • Scandinavian pulp, paper, board test committee (1988) Viscosity in cupri-ethylenediamine solution. Méthode SCAN-C004D 15:88

    Google Scholar 

  • Sihtola H, Kyrklund B, Laamanen L, Palenius I (1963) Comparison and conversion of viscosity and DP-values determined by different methods. Paperi ja Puu 45:225–232

    Google Scholar 

  • Stahmann KP, Monschau N, Sahm H, Koschel A, Gawronski M, Conrad H, Springer T, Kopp F (1995) Structural properties of native and sonicated cinerean, a β-(1 → 3)(1 → 6)–glucan produced by Botrytis cinere. Carbohydr Res 266:115–128

    Article  CAS  Google Scholar 

  • Suslick KS (1988) Ultrasound, its chemical, physical and biological effects. VCH, Weinheim

    Google Scholar 

  • Suslick KS, Price GJ (1999) Application of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326

    Article  CAS  Google Scholar 

  • Takahashi Y, Miki F, Nagase K (1995) Effect of sonolysis on acid degradation of chitin to form oligosaccharides. Bull Chem Soc Jpn 68:1851–1857

    Article  CAS  Google Scholar 

  • Tomasik P, Zaranyika MF (1995) Nonconventional methods of modification of starch. Adv Carbohydr Chem Biochem 51:302–307

    Article  Google Scholar 

  • Vogel AI (1989) A text book of quantitative inorganic analysis, 3rd edn. ELBS Longman, London

    Google Scholar 

  • Yackel EC, Kenyon WO (1942) The oxidation of cellulose by nitrogen dioxide. J Am Chem Soc 64:121–127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Agnès Lejeune for her assistance in TEM analyses and Canada Research Chair in Value-added Paper for the financial support provided during the execution of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurélie Rattaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rattaz, A., Mishra, S.P., Chabot, B. et al. Cellulose nanofibres by sonocatalysed-TEMPO-oxidation. Cellulose 18, 585–593 (2011). https://doi.org/10.1007/s10570-011-9529-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9529-8

Keywords

Navigation