Skip to main content

Advertisement

Log in

Young’s modulus calculations for cellulose Iβ by MM3 and quantum mechanics

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Quantum mechanics (QM) and molecular mechanics (MM) calculations were performed to elucidate Young’s moduli for a series of cellulose Iβ models. Computations using the second generation empirical force field MM3 with a disaccharide cellulose model, 1,4′-O-dimethyl-β-cellobioside (DMCB), and an analogue, 2,3,6,2′,3′,6′-hexadeoxy-1,4′-O-dimethyl-β-cellobioside (DODMCB), that cannot make hydrogen bonds reveal a considerable contribution of intramolecular hydrogen bonding to the molecular stiffness of cellulose Iβ; the moduli for DMCB and DODMCB being 85.2 and 37.6 GPa, respectively. QM calculations confirm this contribution with modulus values of 99.7 GPa for DMCB and 33.0 GPa for DODMCB. However, modulus values for DMCB were considerably lower than values previously reported for cellulose Iβ. MM calculations with extended cellulose chains (10–40 glucose units) resulted in modulus values, 126.0–147.5 GPa, more akin to the values reported for cellulose Iβ. Comparison of the cellodecaose model, 1,4′-O-dimethyl-β-cellodecaoside (DMCD), modulus with that of its hydrogen bonding-deficient analogue, 2,3,6,2′,3′,6′-hexadeoxy-1,4′-O-dimethyl-β-cellodecaoside (DODMCD), corroborates the observed stiffness conferred by intramolecular hydrogen bonds; the moduli for DMCD and DODMCD being 126.0 and 63.3 GPa, respectively. Additional MM3 determinations revealed that modulus values were not strongly affected by intermolecular hydrogen bonding, with multiple strand models providing values similar to the single strand models; 87.5 GPa for a 7-strand DMCB model and 129.5 GPa for a 7 strand DMCD model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Cael JJ, Gardner KH, Koenig JL, Blackwell J (1975) Infrared and Raman spectroscopy of carbohydrates. Paper V. Normal coordinate analysis of cellulose I. J Chem Phys 62:1145–1154

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Davies GR (2006) Modelling the crystalline deformation of native and regenrated cellulose. Cellulose 13:291–307

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Young RJ, Davies GR (2005) Modeling crystal and molecular deformation in regenerated cellulose fibers. Biomacromolecules 6:507–513

    Article  CAS  Google Scholar 

  • Finkenstadt VL, Millane RP (1998) Crystal structure of Valonia cellulose I β. Macromolecules 31:7776–7783

    Article  CAS  Google Scholar 

  • French AD, Johnson GP (2004) Advanced conformational energy surfaces for cellobiose. Cellulose 11:449–462

    Article  CAS  Google Scholar 

  • French AD, Johnson GP (2009) Cellulose and the twofold screw axis: modeling and experimental arguments. Cellulose 16:959–973

    Article  CAS  Google Scholar 

  • Gardner KH, Blackwell J (1974) The structure of native cellulose. Biopolymers 13:1975–2001

    Article  CAS  Google Scholar 

  • Lyons WJ (1959) Theoretical value of the dynamic stretch modulus of cellulose. J Appl Phys 30:796–797

    Article  CAS  Google Scholar 

  • Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23:3266–3275

    Article  CAS  Google Scholar 

  • Meyer KH, Lotmar W (1936) The elasticity of cellulose. IV. The constitution of the crystallized cellulose portion. Helv Chim Acta 19:68–86

    Article  CAS  Google Scholar 

  • Meyer KH, Mark H (1928) Über den bau des krystallinsierten anteils der cellulose. Ber Dtsch Chem Ges 61:593–614

    Article  Google Scholar 

  • Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci Part B Polym Phys 33:1647–1651

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660

    Article  CAS  Google Scholar 

  • Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  Google Scholar 

  • Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517

    Article  CAS  Google Scholar 

  • Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32:1516–1526

    Article  CAS  Google Scholar 

  • Treloar LRG (1960) Calculations of elastic moduli of polymer crystals: III. Cellulose. Polymer 1:290–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Agricultural Research Service funded this work; CRIS project 44000-6435-070-00D. The authors wish to acknowledge Dr. Michael K. Dowd, Dr. Ryan P. Slopek, and Dr. Melisa M. Cherney for helpful comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Santiago Cintrón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santiago Cintrón, M., Johnson, G.P. & French, A.D. Young’s modulus calculations for cellulose Iβ by MM3 and quantum mechanics. Cellulose 18, 505–516 (2011). https://doi.org/10.1007/s10570-011-9507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9507-1

Keywords

Navigation