Skip to main content
Log in

A molecular dynamics study of the thermal response of crystalline cellulose Iβ

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations were performed to better understand the atomic details of thermal induced transitions in cellulose Iβ. The latest version of the GLYCAM force field series (GLYCAM06) was used for the simulations. The unit cell parameters, density, torsion angles and hydrogen-bonding network of the crystalline polymer were carefully analyzed. The simulated data were validated against the experimental results obtained by X-ray diffraction for the crystal structure of cellulose Iβ at room and high temperatures, as well as against the temperature-dependent IR measurements describing the variation of hydrogen bonding patterns. Distinct low and high temperature structures were identified, with a phase transition temperature of 475–500 K. In the high-temperature structure, all the origin chains rotated around the helix axis by about 30° and the conformation of all hydroxymethyl groups changed from tg to either gt on origin chains or gg on center chains. The hydrogen-bonding network was reorganized along with the phase transition. Compared to the previously employed GROMOS 45a4 force field, GLYCAM06 yields data in much better agreement with experimental observations, which reflects that a cautious parameterization of the nonbonded interaction terms in a force field is critical for the correct prediction of the thermal response in cellulose crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bergenstråhle M, Berglund LA, Mazeau K (2007) Thermal response in crystalline Iβ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145

    Article  Google Scholar 

  • Bergenstråhle M, Thormann E, Nordgren N, Berglund LA (2009) Force pulling of single cellulose chains at the crystalline cellulose-liquid interface: a molecular dynamics study. Langmuir 25:4635–4642

    Article  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Hanus J, Mazeau K (2006) The xyloglucan-cellulose assembly at the atomic scale. Biopolymers 82:59–73

    Article  CAS  Google Scholar 

  • Hardy BJ, Sarko A (1996) Molecular dynamics simulations and diffraction-based analysis of the native cellulose fibre: structural modelling of the Iα and Iβ phases and their interconversion. Polymer 37:1833–1839

    Article  CAS  Google Scholar 

  • Heiner AP, Sugiyama J, Teleman O (1995) Crystalline cellulose Iα and Iβ studied by molecular dynamics simulation. Carbohydr Res 273:207–223

    Article  CAS  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hirschfelder JO, Curtiss CF, Brid RB (1954) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  • Hockney RW, Goel SP, Eastwood J (1974) Quiet high-resolution computer models of a plasma. J Comp Phys 14:148–158

    Article  Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  • Hori R, Wada M (2005) The thermal expansion of wood cellulose crystals. Cellulose 12:479–484

    Article  CAS  Google Scholar 

  • Horikawa Y, Itoh T, Sugiyama J (2006) Preferential uniplanar orientation of cellulose microfibrils reinvestigated by the FTIR technique. Cellulose 13:309–316

    Article  CAS  Google Scholar 

  • Huang MR, Li XG (1998) Thermal degradation of cellulose and cellulose esters. J Appl Polym Sci 68:293–304

    Article  CAS  Google Scholar 

  • Kirschner KN, Yongye AB, Tschampel SM, González-outeirtño J, Daniels CR, Lachele Foley B, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydr J Comput Chem 29:622–655

    CAS  Google Scholar 

  • Klemm D, Hans-Perter S, Heinze T (2002) In biopolymers—polysaccharides II. vol. 6, Steinbüchel A (ed). Wiley-VCH, Weinheim

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Mod 7:306–317

    CAS  Google Scholar 

  • Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struc 523:183–196

    Article  CAS  Google Scholar 

  • Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341:138–152

    Article  CAS  Google Scholar 

  • Mazeau K (2005) Structural micro-heterogeneities of crystalline Iβ-cellulose. Cellulose 12:339–349

    Article  CAS  Google Scholar 

  • Mazeau K, Heux L (2003) Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose. J Phys Chem B 107:2394–2403

    Article  CAS  Google Scholar 

  • Neyertz S, Pizzi A, Merlin A, Maigret B, Brown D, Deglise X (2000) A new all-atom force field for crystalline cellulose I. J Appl Polym Sci 78:1939–1946

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Nishiyama Y, Kim UJ, Kim DY, Katsumata KS, May RM, Langan P (2003a) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017

    Article  CAS  Google Scholar 

  • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003b) Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306

    Article  CAS  Google Scholar 

  • Nishiyama Y, Johnson GP, French AD, Forsyth VT, Langan P (2008) Neutron crystallography, molecular dynamics, and quantum mechanics studies of the nature of hydrogen bonding in cellulose Iβ. Biomacromolecules 9:3133–3140

    Article  CAS  Google Scholar 

  • Nosé S (1984) A molecular dynamics methods for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  • Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys 50:1055–1076

    Article  Google Scholar 

  • Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190

    Article  CAS  Google Scholar 

  • Pérez S, Mazeau K (2005) In: Dumitriu S (ed) Polysaccharides, structure and functional versatility, 2nd edn. Marcel Dekker, New York, pp 41–68

  • Reiling S, Brickmann J (1995) Theoretical investigations on the structure and physical properties of cellulose. Macromol Theory Simul 4:725–743

    Article  CAS  Google Scholar 

  • Salmen L, Bergstrom E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR cellulose 16:975–982

    CAS  Google Scholar 

  • Shen T, Gnanakaran S (2009) The stability of cellulose: a statistical perspective from a coarse-grained model of hydrogen-bond networks. Biophys J 96:3032–3040

    Article  CAS  Google Scholar 

  • Spiwok V, Lipovová P, Skálová T, Vondráčková E, Dohnálek J, Hašek J, Králová B (2006) Modelling of carbohydrate-aromatic interactions: ab initio energetics and force field performance. J Comput Aid Mol Des 19:887–901

    Article  Google Scholar 

  • Spiwok V, Králová B, Tvaroška I (2010) Modelling of β-d-glucopyranose ring distortion in different force fields: a metadynamics study. Carbohydr Res 345:530–537

    Article  CAS  Google Scholar 

  • Stortz CA, Johnson GP, French AD, Csonka GI (2009) Comparison of different force fields for the study of disaccharides. Carbohydr Res 344:2217–2228

    Article  CAS  Google Scholar 

  • Sturcova A, His I, Apperley DC, Sugiyama J, Jarvis MC (2004) Structural details of crystalline cellulose from higher plants. Biomacromolecules 5:1333–1339

    Article  CAS  Google Scholar 

  • Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517

    Article  CAS  Google Scholar 

  • Tanaka F, Okamura K (2005) Characterization of cellulose molecules in bio-system studied by modeling methods. Cellulose 12:243–252

    Article  CAS  Google Scholar 

  • van der Spoel D, Lindahl E, Hess B, van Buuren AR, Apol E, Meulenhoff PJ, Tieleman DP, Sijbers ALTM, Feenstra KA, van Drunen R, Berendsen HJC (2005) Gromacs User Manual version 4.0 www.gromacs.org

  • Viétor RJ, Newman RH, Ha MA, Apperley DC, Jarvis MC (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30:721–731

    Article  Google Scholar 

  • Viëtor RJ, Mazeau K, Lakin M, Pérez S (2000) A priori crystal structure prediction of native celluloses. Biopolymers 54:342–354

    Article  Google Scholar 

  • Vliegenthart JFG, Woods RJ (2006) NMR spectroscopy and computer modeling of carbohydrates: recent advances. American Chemical Society, Washington DC, pp 235–257

    Google Scholar 

  • Wada M (2002) Lateral thermal expansion of cellulose Iβ and IIII polymorphs. J Polym Sci Polym Phys 40:1095–1102

    Article  CAS  Google Scholar 

  • Wada M, Kondo T, Okano T (2003) Thermally induced crystal transformation from cellulose Iα to Iβ. Polym J 35:155–159

    Google Scholar 

  • Wada M, Hori R, Kim UJ, Sasaki S (2010) X-ray diffraction study on the thermal expansion behavior of cellulose Iβ and its high-temperature phase. Polym Degrad Stabil 95:1330–1334

    Google Scholar 

  • Watanabe A, Morita S, Ozaki Y (2006a) Study on temperature-dependent changes in hydrogen bonds in cellulose Iβ by infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation spectroscopy. Biomacromolecules 7:3164–3170

    Article  CAS  Google Scholar 

  • Watanabe A, Morita S, Ozaki Y (2006b) Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation analysis. Appl Spectrosc 60:611–618

    Article  CAS  Google Scholar 

  • Wyman CE (2007) What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol 25:153–157

    Article  CAS  Google Scholar 

  • Yui T, Hayashi S (2007) Molecular dynamics simulations of solvated crystal models of cellulose Iα and IIII. Biomacromolecules 8:817–824

    Article  CAS  Google Scholar 

  • Yui T, Nishimura S, Akiba S, Hayashi S (2006) Swelling behavior of the cellulose Iβ crystal models by molecular dynamics. Carbohydr Res 341:2521–2530

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Swedish National Infrastructure for Computing (SNIC) for the project “Multiphysics Modeling of Molecular Materials”, SNIC 022/09-25 and by the Swedish Centre for Biomimetic Fibre Engineering (Biomime).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoquan Tu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Bulone, V., Ågren, H. et al. A molecular dynamics study of the thermal response of crystalline cellulose Iβ. Cellulose 18, 207–221 (2011). https://doi.org/10.1007/s10570-010-9491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9491-x

Keywords

Navigation