Skip to main content
Log in

Towards unnatural xylan based polysaccharides: reductive amination as a tool to access highly engineered carbohydrates

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Low molecular weight xylan was modified at the reducing end with mono and bifunctional amines. Characterization by means of elemental analysis, nmr spectroscopy and mass spectrometry proved the success of the highly selective reaction. Modified xylan containing amino groups at the reducing end are capable to react with unmodified xylan and cellodextrins. The structure of the products obtained was proved by NMR spectroscopy. Size exclusion chromatography and mass spectrometry verified the increased molar mass of the head-head linked polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Asker MMS, Manal GM, Ghada SI (2007) Structural characterization and biological activity of acidic polysaccharide fractions isolated from Bacillus polymyxa NRC-A. J Appl Sci Res 3:1170–1177

    CAS  Google Scholar 

  • Borch RF, Bernstein MD, Durst HD (1971) Cyanohydridoborate anion as a selective reducing agent. J Am Chem Soc 93:2897

    Article  CAS  Google Scholar 

  • Daus S, Heinze T (2010) Xylan-based nanoparticles: prodrugs for ibuprofen release. Macromol Biosci 10:211–220. doi:10.1002/mabi.200900201

    Article  CAS  Google Scholar 

  • Ebringerova A (2005) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1–12. doi:10.1002/masy.200551401

    Article  Google Scholar 

  • Ebringerova A, Heinze T (2000) Xylan and xylan derivatives—biopolymers with valuable properties, 1. naturally occurring xylans structures, isolation procedures and properties. Macromol Rapid Commun 21:542–556. doi:10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0.CO;2-7

    Article  CAS  Google Scholar 

  • Ebringerova A, Hromadkova Z, Heinze T (2005) Hemicellulose. Polysaccharides I, pp 1–67. doi:10.1007/b136812

  • Fredon E, Granet R, Zerrouki R, Krausz P, Saulnier L, Thibault JF, Rosier J, Petit C (2002) Hydrophobic films from maize bran hemicelluloses. Carbohydr Polym 49(1):1–12

    Article  CAS  Google Scholar 

  • Halkes KM, de Souza AC, Maljaars CEP, Gerwig GJ, Kamerling JP (2005) A facile method for the preparation of gold glyconanoparticles from free oligosaccharides and their applicability in carbohydrate-protein interaction studies. Eur J Org Chem 17:3650–3659. doi:10.1002/ejoc.200500256

    Article  Google Scholar 

  • Hasegawa T, Fujisawa T, Numata M, Matsumoto T, Umeda M, Karinaga R, Mizu M, Koumoto K, Kimura T, Okumura S, Sakurai K, Shinkai S (2004) Schizophyllans carrying oligosaccharide appendages as potential candidates for cell-targeted antisense carrier. Org Biomol Chem 2:3091–3098. doi:10.1039/B412124B

    Article  CAS  Google Scholar 

  • Jerez JR, Matsuhiro B, Urzua CC (1997) Chemical modifications of the xylan from palmaria decipiens. Carbohydr Polym 32:155–159

    Article  CAS  Google Scholar 

  • Kamitakahara H, Nakatsubo F (2010) Aba- and bab-triblock cooligomers of tri-o-methylated and unmodified cello-oligosaccharides: syntheses and structure-solubility relationship. Cellulose 17:173–186. doi:/10.1007/s10570-009-9348-3

    Article  CAS  Google Scholar 

  • Kardosova A, Matulova M, Malovíkova A (1998) (4-O-Methyl-[α]–glucurono)–xylan from Rudbeckia Fulgida, var. sullivantii (Boynton et Beadle). Carbohydr Res 308(1–2):99–105. doi:10.1016/S0008-6215(98)00072-X

    Article  CAS  Google Scholar 

  • Kasuya N, Kusaka Y, Habu N, Ohnishi A (2002) Development of chiral stationary phases consisting of low-molecular-weight cellulose derivatives covalently bonded to silica gel. Cellulose 9:263–269. doi:10.1023/A:1021188610098

    Article  CAS  Google Scholar 

  • Kobayashi S, Ohmae M (2006) Enzymatic polymerization to polysaccharides. Enzyme-catalyzed synthesis of polymers, pp 159–210

  • Liebert T, Seifert M, Heinze T (2008) Efficient method for the preparation of pure, water-soluble cellodextrines. Macromol Symp 262:140–149. doi:10.1002/masy.200850214

    Article  CAS  Google Scholar 

  • Petzold K, Schwikal K, Günther W, Heinze T (2005) Carboxymethyl xylan—control of properties by synthesis. Macromol Symp 232:27–36. doi:10.1002/masy.200551404

    Article  Google Scholar 

  • Rustighi I, Campa C, Rossi M, Semeraro S, Vetere A, Gamini A (2009) Analysis of n-acetylaminosugars by ce: a comparative derivatization study. Electrophoresis 30:2632–2639. doi:10.1002/elps.200800791

    Article  CAS  Google Scholar 

  • Schmid G, Biselli M, Wandrey C (1988) Preparation of cellodextrins and isolation of oligomeric side components and their characterization. Anal Biochem 175:573–583. doi:10.1016/0003-2697(88)90586-6

    Article  CAS  Google Scholar 

  • Stephen AM (1983) Other plant polysaccharides, polysaccharides, vol 2. Academic Press, New York, pp 97–193

    Google Scholar 

  • Teleman A, Lundqvist J, Tjerneld F, Stålbrand H, Dahlman O (2000) Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C nmr spectroscopy. Carbohydr Res 329(4):807–815. doi:10.1016/S0008-6215(00)00249-4

    Article  CAS  Google Scholar 

  • Zhang M, Zhang L, Cheung PCK, Ooi VEC (2004) Molecular weight and anti-tumor activity of the water-soluble polysaccharides isolated by hot water and ultrasonic treatment from the sclerotia and mycelia of pleurotus tuber-regium. Carbohydr Polym 56(2):123–128. doi:10.1016/j.carbpol.2004.01.005

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Anja Baumgärtel from the work group of Prof. US Schubert for her efforts to acquire MALDI TOF mass spectra, Marcel Meiland for the preparation of cellodextrins and the Bene Pharmachem (Geretsried) for the generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Heinze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daus, S., Elschner, T. & Heinze, T. Towards unnatural xylan based polysaccharides: reductive amination as a tool to access highly engineered carbohydrates. Cellulose 17, 825–833 (2010). https://doi.org/10.1007/s10570-010-9421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9421-y

Keywords

Navigation