Skip to main content

Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form

Abstract

Water-redispersible, nanofibrillated cellulose (NFC) in powder form was prepared from refined, bleached beech pulp (RBP) by carboxymethylation (c) and mechanical disintegration (m). Two routes were examined by altering the sequence of the chemical and mechanical treatment, leading to four different products: RBP-m and RBP-mc (route 1), and RBP-c and RBP-cm (route 2). The occurrence of the carboxymethylation reaction was confirmed by FT-IR spectrometry and 13C solid state NMR (13C CP-MAS) spectroscopy with the appearance of characteristic signals for the carboxylate group at 1,595 cm−1 and 180 ppm, respectively. The chemical modification reduced the crystallinity of the products, especially for those of route 2, as shown by XRD experiments. Also, TGA showed a decrease in the thermal stability of the carboxymethylated products. However, sedimentation tests revealed that carboxymethylation was critical to obtain water-redispersible powders: the products of route 2 were easier to redisperse in water and their aqueous suspensions were more stable and transparent than those from route 1. SEM images of freeze-dried suspensions from redispersed RBP powders confirmed that carboxymethylation prevented irreversible agglomeration of cellulose fibrils during drying. These results suggest that carboxymethylated and mechanically disintegrated RBP in dry form is a very attractive alternative to conventional NFC aqueous suspensions as starting material for derivatization and compounding with (bio)polymers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • Andresen M, Johansson LS, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677

    Article  CAS  Google Scholar 

  • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27

    Article  CAS  Google Scholar 

  • Bahia HS (1995) Treatment of cellulose. Patent publication number WO9515342

  • Boldizar A, Klason C, Kubat J (1987) Prehydrolyzed cellulose as reinforcing filler for thermoplastics. Int J Polym Mater 11:229–262

    Article  CAS  Google Scholar 

  • Bordeanu N, Eyholzer Ch, Zimmermann T (2008) Cellulose nanostructures with tailored functionalities. Pending patent

  • Cantiani R, Guerin G, Senechal A, Vincent I, Benchimol J (2001) Patent publication numbers US6224663, US6231657, US6306207

  • Cash MJ, Chan AN, Conner HT, Cowan PJ, Gelman RA, Lusvardi KM, Thompson SA, Tise FP (2003) Derivatized microfibrillar polysaccharide. Patent publication number WO0047628

  • Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60:53–58

    Article  CAS  Google Scholar 

  • Couderc S, Ducloux O, Kim BJ, Someya T (2009) A mechanical switch device made of a polyimide-coated microfibrillated cellulose sheet. J Micromech Microeng 19:055006

    Article  Google Scholar 

  • Cuba-Chiem LT, Huynh L, Ralston J, Beattie DA (2008) In situ particle film ATR FTIR spectroscopy of carboxymethyl cellulose adsorption on talc: binding mechanism, pH effects, and adsorption kinetics. Langmuir 24:8036–8044

    Article  CAS  Google Scholar 

  • Dinand E, Chanzy H, Vignon M, Maureaux A, Vincent I (1996) Microfibrillated cellulose and method for preparing same from primary wall plant pulp, particularly sugar beet pulp. Patent publication number WO9624720

  • Excoffier G, Vignon M, Benchimol J, Vincent I, Hannuksela T, Chauve V (1999) Parenchyma cellulose substituted with carboxyalkyl groups and preparation method. Patent publication number WO9938892

  • Eyler RW, Klug ED, Diephuis F (1947) Determination of degree of substitution of sodium carboxymethylcellulose. Anal Chem 19:24–27

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Gilardi G, Abis L, Cass AEG (1995) Carbon-13 CP/MAS solid-state NMR and FT-IR spectroscopy of wood cell wall biodegradation. Enzyme Microb Technol 17:268–275

    Article  CAS  Google Scholar 

  • Goussé C, Chanzy H, Cerrada ML, Fleury E (2004) Surface silylation of cellulose microfibrils: preparation and rheological properties. Polymer 45:1569–1575

    Article  Google Scholar 

  • Heinze T, Koschella A (2005) Carboxymethyl ethers of cellulose and starch—a review. Macromol Symp 223:13–39

    Article  CAS  Google Scholar 

  • Herrick FW (1984) Process for preparing microfibrillated cellulose. Patent publication number US4481077

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Hubbe MA, Rojas OJ, Lucia LA, Sain M (2008) Cellulosic nanocomposites: a review. Biores 3:929–980

    Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Kono H, Yunoki S, Shikano T, Fujiwara M, Erata T, Takai M (2002) CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J Am Chem Soc 124:7506–7511

    Article  CAS  Google Scholar 

  • Laivins GV, Scallan AM (1993) The mechanism of hornification of wood pulps. In: Proc 10th fundamental research sympoisum. Oxford, pp 1235–1260

  • Lasseuguette E (2008) Grafting onto microfibrils of native cellulose. Cellulose 15:571–580

    Article  CAS  Google Scholar 

  • Lindström T, Carlsson G (1982) The effect of carboxyl groups and their ionic form during drying on the hornification of cellulose fibers. Svensk Papperstidning 85:R146–R151

    Google Scholar 

  • Lourdes-Leza M, Cortazar M, Casinos I, Guzmán GM (1989) Thermal degradation of partially carboxymethylated cellulose grafted with 4-vinylpyridine. Angew Makromol Chem 168:195–203

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Proniewicz LM, Paluszkiewicz C, Weselucha-Birczyńska A, Majcherczyk H, Barański A, Konieczna A (2001) FT-IR and FT-Raman study of hydrothermally degradated cellulose. J Mol Struct 596:163–169

    Article  CAS  Google Scholar 

  • Reid JD, Daul GC (1947) The partial carboxymethylation of cotton to obtain swellable fibers, I. Text Res J 17:554–561

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7:1687–1691

    Article  CAS  Google Scholar 

  • Sassi JF, Chanzy H (1995) Ultrastructural aspects of the acetylation of cellulose. Cellulose 2:111–127

    Article  CAS  Google Scholar 

  • Scallan AM, Tigerström AC (1992) Swelling and elasticity of the cell walls of pulp fibres. J Pulp Pap Sci 18:188–193

    CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shafizadeh F, McGinnis GD (1971) Chemical composition and thermal analysis of cottonwood. Carbohydr Res 16:273–277

    Article  CAS  Google Scholar 

  • Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–823

    CAS  Google Scholar 

  • Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloid Surfaces 27:163–173

    Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axns K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  Google Scholar 

  • Walecka JA (1956) An investigation of low degree of substitution carboxymethylcelluloses. Tappi 39:458–463

    CAS  Google Scholar 

  • Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    Article  CAS  Google Scholar 

  • Young RA (1994) Comparison of the properties of chemical cellulose pulps. Cellulose 1:107–130

    Article  CAS  Google Scholar 

  • Zadorecki P, Michell AJ (1989) Future-prospects for wood cellulose as reinforcement in organic polymer composites. Polym Compos 10:69–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their thanks to Beatrice Fischer, as well as Urs Gfeller and Dr. Peter Lienemann for performing the TGA and XRD measurements, respectively and Dr. Philippe Tingaut for carefully reading the manuscript. The authors gratefully acknowledge the State Secretariat for Education and Research (SER) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Eyholzer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eyholzer, C., Bordeanu, N., Lopez-Suevos, F. et al. Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17, 19–30 (2010). https://doi.org/10.1007/s10570-009-9372-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-009-9372-3

Keywords

  • Cellulose
  • Carboxymethylation
  • Mechanical disintegration
  • Nanofibrils
  • Hornification
  • Water-redispersible