Skip to main content

An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes


With the world’s focus on rapidly deploying second generation biofuels technologies, there exists today a good deal of interest in how yields, economics, and environmental impacts of the various conversion processes of lignocellulosic biomass to transportation fuels compare. Although there is a good deal of information regarding these conversion processes, this information is typically very difficult to use on a comparison basis because different underlying assumptions, such as feedstock costs, plant size, co-product credits or assumed state of technology, have been utilized. In this study, a rigorous comparison of different biomass to transportation fuels conversion processes was performed with standard underlying economic and environmental assumptions so that exact comparisons can be made. This study looked at promising second-generation conversion processes utilizing biochemical and thermochemical gasification technologies on both a current and an achievable state of technology in 2012. The fundamental finding of this study is that although the biochemical and thermochemical processes to ethanol analyzed have their individual strengths and weaknesses, the two processes have very comparable yields, economics, and environmental impacts. Hence, this study concludes that based on this analysis there is not a distinct economic or environmental impact difference between biochemical and thermochemical gasification processes for second generation ethanol production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  • Aden A (2007) Water use in current and future biofuels processes. Southwest Hydrology Magazine, vol 6/No 5, September/October 2007. University of Arizona

  • Aden A (2008) Biochemical production of ethanol from corn stover: 2007 state of technology model, NREL/TP-510-43205, Golden.

  • Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B, Montague L, Slayton A, Lukas J (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL/TP-510-32438, Golden.

  • Albertazzi S, Basile F, Brandin J, Einvall J, Fornasari G, Hulteberg C, Sanati M, Trifiro F, Vaccari A (2007) Effect of fly ash and H2S on a Ni-based catalyst for the upgrading of a biomass-generated gas. Biomass Bioenergy 32(4):345–353. doi:10.1016/j.biombioe.2007.10.002

    Article  CAS  Google Scholar 

  • Bain R, Dayton DC, Carpenter DL, Czernik SR, Feik CJ, French RJ, Magrini-Bair KA, Phillips SD (2005) Evaluation of catalyst deactivation during catalytic steam reforming of biomass-derived syngas. Ind Eng Chem Res 44(21):7945–7956. doi:10.1021/ie050098w

    Article  CAS  Google Scholar 

  • Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sustain Energy Rev 4(1):1–73

    Article  CAS  Google Scholar 

  • Carpenter DL, Deutsch SP, French RJ (2007) Quantitative measurement of biomass gasifier tars using a molecular-beam mass spectrometer: comparison with traditional impinger sampling. Energy Fuels 21(5):3036–3043. doi:10.1021/ef070193c

    Article  CAS  Google Scholar 

  • Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2):590–598

    Article  CAS  Google Scholar 

  • Energy production from biomass (2002) Part 2: conversion technologies. Bioresour Technol 83(1):47–54

    Article  Google Scholar 

  • Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kanman DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–509. doi:10.1126/science.1121416

    Article  CAS  Google Scholar 

  • Foust TD, Wallace R, Wooley R, Sheehan J, Ibsen K, Dayton D, Himmel M, Ashworth J, McCormick R, Hess JR, Wright C, Radtke C, Perlack R, Mielenz J, Wang M, Synder S, Werpy T (2007) A national laboratory market and technology assessment of the 30 × 30 scenario. Technical Report, NREL/TP-510-40942

  • Foust TD, Ibsen KI, Dayton DC, Hess JR, Kenney KE (2008) The biorefinery. In: Himmel ED (ed) Biomass recalcitrance, deconstructing the plant cell wall for bioenergy, Chap. 2. Blackwell Publishing

  • Gao Q, Zhang M, McMillan JD, Kompala DS (2002) Characterization of heterologous and native enzyme activity profiles in metabolically engineered Zymomonas mobilis strains during batch fermentation of glucose and xylose mixtures. Appl Biochem Biotechnol 98–100:341–355. doi:10.1385/ABAB:98-100:1-9:341

    Article  Google Scholar 

  • Genecor, NREL press release (2004) Available from:

  • Hallen RT, Sealock LT, Cuello R, Bridgwater AV (1998) In: Kuester JL (ed) Research in thermochemical biomass conversion. Elsevier, London

  • Hamelinck CN, Faaij A (2002) Future prospects for production of methanol and hydrogen from biomass. J Power Sources 111:1. doi:10.1016/S0378-7753(02)00220-3

    Article  CAS  Google Scholar 

  • Hamelinck CN, Faaij APC (2005) Outlook for advanced biofuels. Energy Policy 34(17):3268–3283. doi:10.1016/j.enpol.2005.06.012

    Article  Google Scholar 

  • Herman RG (2000) Advances in catalytic synthesis and utilization of higher alcohols. Catal Today 55(3):233–245. doi:10.1016/S0920-5861(99)00246-1

    Article  CAS  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels productions. Science 315:804–807

    Article  CAS  Google Scholar 

  • Houghton J, Weatherwax S, Ferrell J (2005) Breaking the biological barriers to cellulosic ethanol: a joint research agenda, biomass to biofuels, Rockville, 7–9 Dec 2005 (to order the report

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098. doi:10.1021/cr068360d

    Article  CAS  Google Scholar 

  • Jennings E, Schell D (2006) Evaluate alternative conditioning technology with the potential to eliminate sugar losses, NREL Internal Report (submitted)

  • Lau MW, Dale BE, Balan V (2008) Ethanolic fermentation of hydrolysates from ammonia fiber expansion (AFEX) treated corn stover and distillers grain without detoxification and external nutrient supplementation. Biotechnol Bioeng 99(3):529–539. doi:10.1002/bit.21609

    Article  CAS  Google Scholar 

  • Magrini-Bair KA, Czernik S, French R, Parent YO, Chornet E, Dayton DC, Feik C, Bain R (2007) Fluidizable reforming catalyst development for conditioning biomass-derived syngas. Appl Catal Gen 318:199–208. doi:10.1016/j.apcata.2006.11.005

    Article  CAS  Google Scholar 

  • McMillan JD (1994) Conversion of hemicellulose hydrolyzates to ethanol. In: Himmel ME, Baker JO, Overend RA (eds) Enzymatic conversion of biomass for fuels production, ACS Symposium Series 556, American Chemical Society, Washington, DC, pp. 411–437

  • Milne TA, Evans RJ, Abatzoglou N (1998) Biomass gasifier tars: their nature, formation and conversion; Report No. NREL/TP-570-25357, National Renewable Energy Laboratory: Golden.

  • Mitchell D (2008) A note on rising food prices. Policy Research Working Paper 4682, The World Bank Development Prospects Group

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686. doi:10.1016/j.biortech.2004.06.025

    Article  CAS  Google Scholar 

  • Nishikawa J, Nakamura K, Asadullah M, Miyazawa T, Kunimori K, Tomishige K (2008) Catalytic performance of Ni/CeO2/Al2O3 modified with noble metals in steam gasification of biomass. Catal Today 131(1–4):146–155. doi:10.1016/j.cattod.2007.10.066

    Article  CAS  Google Scholar 

  • Nunes SM, Paterson N, Herod AA, Dugwell DR, Kandiyoti R (2008) Tar formation and destruction in a fixed bed reactor simulating downdraft gasification: optimization of conditions. Energy Fuels 22(3):1955–1964. doi:10.1021/ef700662g

    Article  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply, DOE/GO-102005-2135. Oak Ridge National Laboratory, Oak Ridge

  • Phillips SD (2007) Technoeconomic analysis of a lignocellulosic biomass indirect gasification process to make ethanol via mixed alcohols synthesis. Ind Eng Chem Res 46(26):8887–8897. doi:10.1021/ie071224u

    Article  CAS  Google Scholar 

  • Phillips S, Aden A, Jechura J, Dayton D, Eggeman T (2007) Thermochemical ethanol via indirect gasification and mixed alcohol synthesis of lignocellulosic biomass. NREL/TP-510-41168, Golden.

  • Pienkos PT, Zhang M (2008) Assemble comprehensive literature review on hydrolysate toxicity issue. NREL Internal Report (submitted)

  • Rammamorth R, Kastury S, Smith WH (2000) Bioenergy: vision for the new millennium. Science Publishers, Enfield

    Google Scholar 

  • Sandalow D (2008) Freedom from oil: how the next president can end the United States’ oil addiction, McGraw Hill, ISBN-13: 978-0-07-148906-5

  • Sato K, FujiMoto K (2007) Development of new nickel based catalyst for tar reforming with superior resistance to sulfur poisoning and coking in biomass gasification. Catal Commun 8(11):1697–1701. doi:10.1016/j.catcom.2007.01.028

    Article  CAS  Google Scholar 

  • Selig MJ, Knoshaug EP, Decker SR, Baker JO, Himmel ME, Adney WS (2008) Heterologous expression of Aspergillus niger B-D-Xylosidase (XlnD): characterization on lignocellulosic substrates. Appl Biochem Biotechnol 146:57–68. doi:10.1007/s12010-007-8069-z

    Article  CAS  Google Scholar 

  • Spath PL, Dayton DC (2003) Preliminary screening—technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. NREL/TP-510-34929. National Renewable Energy Laboratory, Golden

  • Terter SA, Xu F, Nedwin GE, Cherry JR (2006) Enzymes for biorefineries, Chap. 16. In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries-industrial processes and products status quo and future directions, vol 1, Verlag Gmbh and Co., Wiley-VCH, Weinheim, Gemany

  • Timensen JAM, Faaij APC, Hemelinck CN (2002) Exploration of the possibilities for production of Fischer-Tropsch liquids and power via biomass gasification. Biomass Bioenergy 23:129. doi:10.1016/S0961-9534(02)00037-5

    Article  Google Scholar 

  • Torres W, Pansare SS, Goodwin JG (2007) Hot gas removal of tars, ammonia and hydrogen sulfide from biomass gasification gas. Catal Rev Sci Eng 49(4):407–456

    CAS  Google Scholar 

  • Trostle R (2008) Global agricultural supply and demand: factors contributing to the recent increase in food commodity prices, USDA—a report form the Economic Research Service, WRS-0801

  • US DOE Biomass Multi-Year Program Plan (2008) Office of the biomass program, energy efficiency and renewable energy, U.S. DOE.

  • Wender I (1996) Reactions of synthesis gas. Fuel Process Technol 48(3):1041–1048. doi:10.1016/S0378-3820(96)01048-X

    Google Scholar 

  • Williams RH, Larson ED, Katofsky RE, Chen J (1995) Methanol and hydrogen from biomass for transportation, with comparisons to methanol and hydrogen from natural gas and coal. PU/CEES Report 292, Center for Energy and Environmental Studies, Princeton University, Princeton

  • Wooley R, Ruth M, Glassner D, Sheehan J (1999) Process design and costing of bioethanol technology: a tool for determining the status and direction of research and development. Biotechnol Prog 15:794. doi:10.1021/bp990107u

    Article  CAS  Google Scholar 

  • Wright MM, Brown RC (2007) Comparative economics of biorefineries based on the biochemical and thermochemical platforms. Published online in Wiley InterScience ( Biofuels, Bioproducts Biorefining 1:49–56. doi 10.1002/bbb.8

  • Wyman CE (1996) Handbook on bioethanol: production and utilization. Applied Energy Science Technology Series. Taylor and Francis

  • Yu F, Deng SB, Chen P, Liu YH, Wan YQ, Olson A, Kittelson D, Ruan R (2007) Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover. Appl Biochem Biotechnol 137:957–970. doi:10.1007/s12010-007-9111-x

    Article  Google Scholar 

  • Zeman Z (2007) Thermochemical versus biochemical. Biomass Magazine, June 2007

  • Zhang M, Nagle N (2008) Define the relationships between corn stover hydrolysate conditioning and fermentation performance in lab equipment. NREL Internal Report (submitted)

  • Zwart RWR, Boerrigter H (2005) High efficiency co-production of synthetic natural gas (SNG) and Fischer-Tropsch (FT) transportation fuels from biomss. Energy Fuels 19(2):591–597. doi:10.1021/ef049837w

    Article  CAS  Google Scholar 

Download references


The work was supported by the US DOE Office of the Biomass Program.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Thomas D. Foust.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Foust, T.D., Aden, A., Dutta, A. et al. An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose 16, 547–565 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Biofuel
  • Biochemical
  • Thermochemical
  • Biomass
  • Feedstock
  • Ethanol
  • Corn stover
  • Gasification
  • Catalyst
  • Fuel synthesis
  • Pretreatment
  • Enzymatic hydrolysis
  • Fermentation
  • Energy efficiency
  • Emission
  • Inhibitor
  • Recycle
  • Mixed alcohol