We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Liquid crystalline cellulose derivative elastomer films under uniaxial strain

Abstract

Mesogenic cellulose derivative chains cross-linked into free-standing thin films were prepared by a shear-casting technique from anisotropic precursor solutions of thermotropic (acetoxypropyl)cellulose. After shear cessation a macroscopically oriented serpentine structure with the director in average along the shear direction is locked resulting in anisotropic optical and mechanical properties of the material. These films were submitted to an external uniaxial mechanical field perpendicular and parallel to the shear direction. Stretching perpendicular to the shear direction produced significant director rotations and a reset of order of the director order parameter for a deformation in the range 2–3 as detected by X-rays and optical microscopy. The different response found for strains imposed parallel and perpendicular to the initial average director orientation indicates that even though our system shows a serpentine director modulation that is either attenuated or reinforced by deformations parallel or perpendicular to the shear direction, its behaviour is similar to theoretical predictions for monodomain nematic elastomers described in the literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Adams JM, Warner M (2005) Eur Phys J E 16:97. doi:10.1140/epje/e2005-00012-3

    Article  CAS  Google Scholar 

  2. Andresen EM, Mitchell GR (1998) Europhys Lett 43:296. doi:10.1209/epl/i1998-00355-6

    Article  CAS  Google Scholar 

  3. Bladon P, Warner M, Terentjev EM (1994) Macromolecules 27:7067. doi:10.1021/ma00102a010

    Article  CAS  Google Scholar 

  4. Clarke SM, Tajbakhsh AR, Terentjev EM, Remillat C, Tomlinson GR, House JR (2001) J Appl Phys 89:6530. doi:10.1063/1.1368177

    Article  CAS  Google Scholar 

  5. Costa I, Filip D, Figueirinhas JL, Godinho MH (2007) Carbohydr Polym 68:159

    Article  CAS  Google Scholar 

  6. Deutsch M (1991) Phys Rev A 44:8264. doi:10.1103/PhysRevA.44.8264

    Article  Google Scholar 

  7. Evmenenko G, Yu C-J, Kewalramani S, Dutta P (2004) Langmuir 20:1698

    Article  CAS  Google Scholar 

  8. Filip D, Costa I, Figuerinhas JL, Godinho Liq MH (2006) Liq Cryst 33:109

    Article  CAS  Google Scholar 

  9. Finkelmann H, Kundler I, Terentjev EM, Warner M (1997) J Phys II 7:1059. doi:10.1051/jp2:1997171

    Article  CAS  Google Scholar 

  10. Godinho MH, Fonseca JG, Ribeiro AC, Melo LV, Brogueira P (2002) Macromolecules 35:5932. doi:10.1021/ma0118769

    Article  CAS  Google Scholar 

  11. Godinho MH, van der Klink JJ, Martins AF, Phys J (2003) C-Cond Mat 15:5461

    Article  CAS  Google Scholar 

  12. Laivins GV, Sixou P, Gray DG (1986) J Polym Sci Polym Phys 24:2779. doi:10.1002/polb.1986.090241213

    Article  CAS  Google Scholar 

  13. Mori N, Marimoto M, Nakamura K (1999) Adv Mater 11:1049. doi:10.1002/(SICI)1521-4095(199908)11:12<1049::AID-ADMA1049>3.0.CO;2-D

    Article  CAS  Google Scholar 

  14. Navard P, Zachariades AE (1987) J Polym Sci Polym Phys 25:1089. doi:10.1002/polb.1987.090250510

    Article  CAS  Google Scholar 

  15. Roberts PM, Mitchell GR, Davis FJ (1997) J Phys II 7:1337. doi:10.1051/jp2:1997190

    Article  CAS  Google Scholar 

  16. Rusig I, Dedier J, Filliatre C, Godinho MH, Varichon L, Sixou P (1992) J Polym Sci Polym Chem 30:895. doi:10.1002/pola.1992.080300521

    Article  CAS  Google Scholar 

  17. Tseng SL, Valente A, Gray DG (1981) Macrmolecules 14:715. doi:10.1021/ma50004a049

    Article  CAS  Google Scholar 

  18. Verwey GC, Warner M, Terentjev EM (1996) J Phys II 6:1273. doi:10.1051/jp2:1996130

    Article  CAS  Google Scholar 

  19. Viney C, Putnam WS (1995) Polymer (Guildf) 36:1731. doi:10.1016/0032-3861(95)90921-N

    Article  CAS  Google Scholar 

  20. Wang J, Labes MM (1992) Macromolecules 25:5790. doi:10.1021/ma00047a034

    Article  CAS  Google Scholar 

  21. Yan L, Zhu Q, Ikeda T (2003) Polym Int 52:265. doi:10.1002/pi.1088

    Article  CAS  Google Scholar 

  22. Zhao C-T, Zhang G-L, Cai B-L, Xu M (1998) Macromol Chem Phys 199:1485. doi:10.1002/(SICI)1521-3935(19980801)199:8<1485::AID-MACP1485>3.0.CO;2-O

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. D. Filip acknowledges Portuguese Science Foundation (FCT) for the granted fellowship SFRH/BPD/19722/2004. This work was partially supported by projects POCTI/CTM/56382/2004 and by FCT through multi-annual contracts with CENIMAT .

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. H. Godinho.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Godinho, M.H., Filip, D., Costa, I. et al. Liquid crystalline cellulose derivative elastomer films under uniaxial strain. Cellulose 16, 199–205 (2009). https://doi.org/10.1007/s10570-008-9258-9

Download citation

Keywords

  • Cellulose elastomer
  • Liquid crystalline cellulose film
  • Strained cellulose film