Skip to main content
Log in

New water-soluble and film-forming aminocellulose tosylates as enzyme support matrices with Cu2+-chelating properties

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Within the framework of our studies on enzyme-compatible support matrix structures, we succeeded in making further derivatives of the new aminocellulose type ‘P–CH2–NH–(X)–NH2’ (P = cellulose); (X) =  –(CH2)2– (EDA), –(CH2)2–NH–(CH2)2– (DETA), –(CH2)3–NH–(CH2)3– (DPTA), –(CH2)2–NH–(CH2)2–NH–(CH2)2– (TETA) accessible by nucleophilic substitution reaction with ethylenediamine (EDA) and selected oligoamines starting from 6(2)-O-tosylcellulose tosylate (DStosylate = 0.8). The 13C-NMR data show that the EDA and oligoamine residues are at C6 of the anhydroglucose unit (AGU) and that OH and tosylate are also (partially) present at C6. OH and partially tosylate are at C2/C3. All the synthesized aminocellulose tosylates were soluble in water and formed transparent films from their solutions. The aminocellulose tosylate solutions and the films prepared from them formed blue-coloured chelate complexes with Cu2+ ions, whose absorption maxima at wavelengths in the VIS region were located similarly to those of the Cu2+ chelate complexes with EDA and with the oligoamines. AFM investigations have shown that the aminocellulose films, depending on structural and environment-induced factors influencing e.g. SiO2 polymer films, exhibit ‘flat’ topographies (<1 nm), and on protonated NH2 polymer films, such as aminopropyl-functionalized polysiloxane films, ‘nanostructured’ topographies of derivative-dependent shape and nanostructure size as film supports in the form of ‘nanotubes’. The aminocellulose films could be covalently coupled with glucose oxidase enzyme by various known and novel bifunctional reactions via NH2-reactive compounds. In this connection, it was confirmed again that the immobilized enzyme parameters, such as enzyme activity/area and KM value, can be changed by the interplay of aminocellulose film, coupling structure and enzyme protein in the sense of an application-relevant optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)

AFM:

atomic force microscopy

AGU:

anhydroglucose unit

APTMS:

3-aminopropyltrimethoxysilane

DETA:

diethylenetriamine

DMA:

N,N-dimethylacetamide

DMSO:

dimethylsulfoxide

DPTA:

dipropylenetriamine

DS:

degree of substitution

EDA:

ethylenediamine

GOD:

glucose oxidase

HDA:

hexylenediamine

HRP:

horseradish peroxidase

MPTEOS:

methacrylpropyltriethoxysilane

SPR:

surface plasmon resonance

TETA:

tetraethylene tetramine

THF:

tetrahydrofuran

References

  1. M. Alvarez-Icaza H.M. Kalisz H.J. Hecht K.-D. Aumann D. Schomburg R.D. Schmid (1995) ArticleTitleThe design of enzyme sensors based on the enzyme structure Biosens. Bioelectron. 10 735–742

    Google Scholar 

  2. A.V. Barmin A.V. Eremenko A.A. Sokolovskij S.F. Chernov I.N. Kurochkin (1993) ArticleTitleNew catalytic properties of glucose oxidase in monomolecular films Biotechnol. Appl. Biochem. 18 369–376

    Google Scholar 

  3. P. Berlin J. Tiller R. Rieseler D. Klemm (1998) ArticleTitleSupramolekulare Erkennungsstrukturen auf Cellulosebasis Das Papier 52 737–742

    Google Scholar 

  4. P. Berlin D. Klemm J. Tiller R. Rieseler (2000) ArticleTitleFeature – a novel soluble aminocellulose derivate type: its transparent film-forming properties and its efficient coupling with enzyme proteins for biosensors Macromol. Chem. Phys. 201 2070–2082

    Google Scholar 

  5. P. Berlin D. Klemm A. Jung H. Liebegott R. Rieseler J. Tiller (2003) ArticleTitleReview – Film-forming aminocellulose derivatives as enzyme-compatible support matrices for biosensor developments Cellulose 10 343–367

    Google Scholar 

  6. J. Chibatu (1978) Preparation of Immobilized Enzymes and Microbial Cells. Main entry under title: Immobilized Enzymes, Research and Development Kodanska Scientific Books TokyoJapan and Halsted Press, New York

    Google Scholar 

  7. A.R. Comfort E. Albert R. Langer (1989) ArticleTitleImmobilized enzyme cellulose hollow fibers: immobilization of heparinase Biotechnol. Bioeng. 34 1366–1374

    Google Scholar 

  8. J.V. Daele J.-F. Revol F. Gaill G. Coffinet (1992) ArticleTitleCharacterization of supramolecular architecture of the cellulose-protein in the tunic sea peach J. Biol. Cell 76 87–96

    Google Scholar 

  9. H. Gallati (1979) ArticleTitleHorseradish-peroxidase – study of the kinetics and the determination of optimal reaction conditions, using hydrogen-peroxide and 2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) as substrates J. Clin. Chem. Clin. Biochem. 17 1–7

    Google Scholar 

  10. L. Goldstein (1976) Kinetic behavior of immobilized enzyme systems K. Mosbach (Eds) Immobilized Enzymes. Methods in Enzymology Academic Press New York 397–443

    Google Scholar 

  11. A.P.A. Goncalves M.B.F. Martins M.E.M. Cruz (1991) ArticleTitleAnalytical use of immobilized glucose oxidase – kinetic and operational studies Appl. Biochem. Biotechnol. 27 139–143

    Google Scholar 

  12. W. Göpel (1994) ArticleTitleNew materials and transducers for chemical sensors Sensors Actuators B18–19 1–21

    Google Scholar 

  13. B.A. Gregg A.J. Heller (1991) ArticleTitleRedox-polymer films containing enzymes. 2. Glucoseoxidase containing enzyme electrodes J. Phys. Chem. 95 5976–5980

    Google Scholar 

  14. A. Jung P. Berlin B. Wolters (2004) ArticleTitleBiomolecule-compatible support structures for biomolecule coupling to physical measuring principle surfaces IEE Proc. Nanobiotechnol. 151 87–94

    Google Scholar 

  15. H.E. Klei D.W. Sundstrom D. Shim (1985) Immobilisation of enzymes by micro-encapsulation J. Woodward (Eds) Immobilised Cells and Enzymes – A Practical Approach IRL Press Ltd OxfordUK 49–54

    Google Scholar 

  16. J.-ru Li Y.-ke Diu P. Boullanger L. Giang (1999) ArticleTitleThe folding and enzymatic activity of glucose oxidase in the glycolipid matrix of different charges Thin Solid Films 352 213–217

    Google Scholar 

  17. Ch. Mannhalter (1993) ArticleTitleBiocompatibility of artificial surfaces such as cellulose and related materials Sensors Actuators B11 273–279

    Google Scholar 

  18. K. Mosbach (1988) Immobilized Enzymes and Cells. Methods in Enzymology Academic Press San DiegoCA

    Google Scholar 

  19. J.H. Parzur H.R. Knull L. Simpson (1970) ArticleTitleGlycoenzymes: a note on the role for the carbohydrate moieties Biochem. Biophys. Res. Commun. 40 110–115

    Google Scholar 

  20. R. Rieseler 2001 Analyt-sensitive Nanostrukturschichten für die Biosensor-Entwicklung auf funktionalisierter Aminocellulosen und SiOx Polymerbasis. Dissertation Thesis Forschungszentrum Juelich GmbH and RWTH Aachen. Germany

  21. A. Sansubrino M. Mascini (1994) ArticleTitleDevelopment of an optical fiber sensor for ammoniaurease and IgG Biosens. Bioelectron. 9 207–216

    Google Scholar 

  22. D.S. Sternberg Bindra G.S. Wilson D.R. Thevenot (1988) ArticleTitleCovalent enzyme coupling on cellulose acetate membranes for glucose sensor development Anal. Chem. 60 2781–2788

    Google Scholar 

  23. Tiller J. 1999. Maßgeschneiderte Aminocellulosederivate zum Aufbau supramolekularer Cellulose-Architekturen mit Analyt-Erkennungsfunktion und optischer Signalgruppe. Dissertation Thesis, Friedrich-Schiller-Universität Jena/Forschungszentrum JülichGermany.

  24. J. Tiller P. Berlin D. Klemm (1999a) ArticleTitleSoluble and film-forming cellulose derivates with redoxchromogenic and enzyme immobilizing 1,4-phenylendiamine groups Macromol. Chem. Phys. 200 1–9

    Google Scholar 

  25. J. Tiller P. Berlin D. Klemm (1999b) ArticleTitleNovel efficient enzyme immobilization on NH2 polymers by means of l-ascorbic acid Biotechnol. Appl. Biochem. 30 IssueID2 155–162

    Google Scholar 

  26. J. Tiller P. Berlin D. Klemm (2000) ArticleTitleNovel matrices for biosensor applications by structural design of redox-chromogenic aminocellulose esters J. Appl. Polymer Sci. 75 904–915

    Google Scholar 

  27. J. Tiller D. Klemm P. Berlin (2001) ArticleTitleDesigned aliphatic aminocellulose derivatives as transparent and functionalized coatings for enzyme immobilization Des. Monomers Polym. 4 315–328

    Google Scholar 

  28. J. Tiller R. Rieseler P. Berlin D. Klemm (2002) ArticleTitleStabilization of activity of oxidoreductases by their immobilization onto special functionalized glass and novel aminocellulose film using different coupling reagents Biomacromolecules 3 1021–1029

    Google Scholar 

  29. G. Vegarnd T.B. Christensen (1975) ArticleTitleGlycosylation of proteins – new method of enzyme stabilization Biotechnol. Bioeng. 17 1391–1397

    Google Scholar 

  30. B.H. Weigl A. Holobar N.V. Rodriges O. Wolfbeis (1993) ArticleTitleRobust carbon dioxide optrode based on covalently immobilized pH indicator Proc. SPIE 2068 22ff

    Google Scholar 

  31. J. Woodward (1985) Immobilised enzymes: adsorption and covalent coupling J. Woodward (Eds) Immobilised Cells and Enzymes – A Practical Approach IRL Press Ltd OxfordUK 3–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, A., Berlin, P. New water-soluble and film-forming aminocellulose tosylates as enzyme support matrices with Cu2+-chelating properties. Cellulose 12, 67–84 (2005). https://doi.org/10.1007/s10570-004-4356-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-004-4356-9

Keywords

Navigation