Skip to main content
Log in

Variation of xyloglucan substitution pattern affects the sorption on celluloses with different degrees of crystallinity

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The sorption of xyloglucan (XG) on cellulose is a basic feature of the supramolecular assembly of plant cell walls. The binding to cellulose of xyloglucan fractions from Rubus fruticosus suspension-cultured cells with different substitution patterns was assayed on celluloses having various degrees of crystallinity between 20 and 95%. The primary structure of XGs differing in their Xyl/Glc ratio affected their binding to cellulose. The less substituted XGs gave the highest binding yields. Selective removal of the terminal fucosyl residues of XGs differentially affected the binding depending on the crystallinity of cellulose. The results showed large variations on the way cellulose crystallinity affects the binding interaction of XGs. Interestingly, one of the highest binding capacities was exhibited by the primary cell wall cellulose isolated from the actual R. fruticosus cells which also had the lowest crystallinity. Differences in binding to primary wall cellulose appeared to be inversely related to the global substitution of the glucan main chain of XGs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

XG:

xyloglucan

XGn:

native xyloglucan

XG-deF:

de-fucosylated xyloglucan

References

  • J.L. Acebes E.P. Lorences G. Revilla I. Zarra (1993) ArticleTitlePine xyloglucan. Occurrencelocalization and interaction with cellulose Physiol. Plant. 89 417–422 Occurrence Handle1:CAS:528:DyaK2cXntlCrsg%3D%3D

    CAS  Google Scholar 

  • G.O. Aspinall J.A. Molloy J.W.T. Craig (1969) ArticleTitleExtracellular polysaccharides from suspension-cultured sycamore cells Can. J. Biochem. 47 1063–1070 Occurrence Handle1:CAS:528:DyaE3cXitFQ%3D Occurrence Handle10.1139/o69-170

    Article  CAS  Google Scholar 

  • K. Baba Y. Sone A. Misaki T. Hayashi (1994) ArticleTitleLocalization of xyloglucan in the macromolecular complex composed of xyloglucan and cellulose in pea stems Plant Cell Physiol. 3 439–444

    Google Scholar 

  • G. Chambat N. Cartier A. Lefebvre M.-F. Marais J.-P. Joseleau (1997) ArticleTitleChanges in cell wall and extracellular polysaccharides during the culture of Rubus fruticosus cells in suspension culture Plant Physiol. Biochem. 35 655–664 Occurrence Handle1:CAS:528:DyaK2sXlslejt7s%3D

    CAS  Google Scholar 

  • Chambat G., Faik A., Lefebvre A., Marais M.-F. and Joseleau J.-P. 1995. Native xyloglucan oligosaccharides excreted in the culture medium of Rubus fruticosus suspension cells. In: Zarra I. and Revilla G. (eds), 7th Cell Wall Meeting, Abstract. p. 64.

  • Chanda S.K., Hirst E.L., Jones J.K.N. and Percival E.G.U. 1950. Constitution of xylan from esparto grass (Stipa tenacissima). J. Chem. Soc.: 989--996.

  • E. Chanliaud K.M. Burrows G. Jeronimidis M.J. Gidley (2002) ArticleTitleMechanical properties of primary plant cell wall analogues Planta 215 989–996 Occurrence Handle10.1007/s00425-002-0783-8 Occurrence Handle1:CAS:528:DC%2BD38XovValurg%3D Occurrence Handle12355159

    Article  CAS  PubMed  Google Scholar 

  • H. Chanzy (1990) Aspects of cellulose structure J.F. Kennedy G.O. Phillips P.A. Williams (Eds) CelluloseSources and Exploitation Ellis Horwood Ltd New York 3–12

    Google Scholar 

  • H. Chanzy B. Henrissat M. Vincendon S.F. Tanner P.S. Belton (1987) ArticleTitleSolid-state 13C-NMR and electron microscopy study on the reversible cellulose I → cellulose III1 transformation in Valonia Carbohydr. Res. 160 1–11 Occurrence Handle1:CAS:528:DyaL2sXhsFeisLo%3D

    CAS  Google Scholar 

  • H. Chanzy K. Imada A. Mollard R. Vuong F. Barnoud (1979) ArticleTitleCrystallographic aspects of sub-elementary cellulose fibrils occurring in the wall of rose cells cultured in vitro Protoplasma 100 303–316 Occurrence Handle1:CAS:528:DyaL3cXjs1ektw%3D%3D

    CAS  Google Scholar 

  • D.J. Cosgrove (1997) ArticleTitleAssembly and enlargement of the primary cell wall in plants Annu. Rev. Cell Dev. Biol. 13 171–201 Occurrence Handle1:CAS:528:DyaK1cXisFSksQ%3D%3D

    CAS  Google Scholar 

  • D.J. Cosgrove (1999) ArticleTitleEnzymes and other agents that enhance cell wall extensibility Annu. Rev. Plant Physiol. Mol. Biol. 50 391–417 Occurrence Handle1:CAS:528:DyaK1MXkt1yksbg%3D

    CAS  Google Scholar 

  • M. Dubois K.A. Gilles J.K. Hamilton P.A. Rebers F. Smith (1956) ArticleTitleColorimetric method for determination of sugars and related substances Anal. Chem. 28 350–356 Occurrence Handle1:CAS:528:DyaG28XjvFynsg%3D%3D

    CAS  Google Scholar 

  • H.G. Edelmann S.C. Fry (1992) ArticleTitleEffect of cellulose synthesis inhibition on growth and the integration of xyloglucan into pea internode cell walls Plant Physiol. 100 993–997 Occurrence Handle1:CAS:528:DyaK38XmsVyltro%3D

    CAS  Google Scholar 

  • V.L. Finkenstadt T.L. Hendrixson R.P. Millane (1995) ArticleTitleModels of xyloglucan binding to cellulose microfibrils J. Carbohydr. Chem. 14 601–611 Occurrence Handle1:CAS:528:DyaK2MXmt1yksLs%3D

    CAS  Google Scholar 

  • S.C. Fry (1988) Wall turnover and sloughing M. Wilkins (Eds) The Growing Plant Cell Wall, Chemical and Metabolic Analysis Longman London 250–256

    Google Scholar 

  • S.C. Fry (1995) ArticleTitlePolysaccharide-modifying enzymes in the plant cell wall Annu. Rev. Plant Physiol. Mol. Biol. 46 497–520 Occurrence Handle1:CAS:528:DyaK2MXmsVCqur0%3D

    CAS  Google Scholar 

  • S.C. Fry W.S. York P. Albersheim A. Darvill T. Hayashi J.-P. Joseleau Y. Kato E.P. Lorences G.A. Maclachlan M. McNeil A.J. Mort J.S.G. Reid H.U. Seitz R.R. Selvendran A.G.J. Voragen A.R. White (1993) ArticleTitleAn unambiguous nomenclature for xyloglucan-derived oligosaccharides Physiol. Plant. 89 1–3 Occurrence Handle1:CAS:528:DyaK2cXisF2jtg%3D%3D

    CAS  Google Scholar 

  • T. Fujino Y. Sone Y. Mitsuishi T. Itoh (2000) ArticleTitleCharacterization of cross-links between cellulose microfibrils, and their occurrence during elongation growth in pea epicotyl Plant Cell Physiol. 41 486–494 Occurrence Handle1:CAS:528:DC%2BD3cXislOju7w%3D

    CAS  Google Scholar 

  • J.M. Hackney R.H. Atalla D.L. VanderHart (1994) ArticleTitleModification of crystallinity and structure of Acetobacter xylinum cellulose on the presence of water-soluble β-1,4-linked polysaccharides: 13C-NMR evidence Int. J. Biol. Macromol. 4 215–218

    Google Scholar 

  • Haigler C.H. 1991. In: Haigler C.H. and Weimer P.J. (eds), Biosynthesis and Biodegradation of Cellulose. Marcel Dekker, New York, Basel, Hong Kong, p. 99.

  • T. Hannuksela M. Tenkanen B. Holmbom (2002) ArticleTitleSorption of dissolved galactoglucomannans and galactomannans to bleached kraft pulp Cellulose 9 251–261 Occurrence Handle1:CAS:528:DC%2BD38XovVGisLw%3D

    CAS  Google Scholar 

  • T. Hayashi K. Ogawa Y. Mitsushi (1994) ArticleTitleCharacterization of the adsorption of xyloglucan to cellulose Plant Cell Physiol. 35 1199–1205 Occurrence Handle1:CAS:528:DyaK2MXislait74%3D

    CAS  Google Scholar 

  • T. Hayashi G.A. Maclachlan (1984) ArticleTitlePea xyloglucan and cellulose. I. Macromolecular organization Plant Physiol. 75 596–604 Occurrence Handle1:CAS:528:DyaL2cXkvVOmsrY%3D

    CAS  Google Scholar 

  • J.-P. Joseleau G. Chambat A. Cortelazzo A. Faik K. Ruel (1994) ArticleTitlePutative biological action of oligosaccharides on enzymes involved in cell wall development Biochem. Soc. Trans. 22 403–407 Occurrence Handle1:CAS:528:DyaK2cXktlWjt70%3D

    CAS  Google Scholar 

  • T. Kaku A. Tabuchi K. Wakabayashi S. Kamisaka T. Hoson (2002) ArticleTitleAction of xyloglucan hydrolase within the native cell wall architecture and its effect on cell wall extensibility in azuki bean epicotyls Plant Cell Physiol. 43 21–26 Occurrence Handle1:CAS:528:DC%2BD38XhtVyqtrs%3D

    CAS  Google Scholar 

  • P. Kooiman (1960) ArticleTitleA method for the determination of amyloid in plant seeds Rec. Trav. Chim. Pays Bas 79 675–678 Occurrence Handle1:CAS:528:DyaF3MXjtlek

    CAS  Google Scholar 

  • A.K. Kulshreshtha N.E. Dweltz (1973) ArticleTitleParacrystalline lattice disorder in cellulose. I. Reappraisal of the application of the two-phase hypothesis to the analysis of powder X-ray diffractograms of native and hydrolysed cellulosic materials J. Polym. Sci. 11 487–497 Occurrence Handle1:CAS:528:DyaE3sXht1GksLk%3D

    CAS  Google Scholar 

  • S. Levy G. Maclachlan L.A. Staehelin (1997) ArticleTitleXyloglucan sidechains modulate binding to cellulose during in vitro binding assays as predicted by conformational dynamics simulations Plant J. 11 373–386 Occurrence Handle1:CAS:528:DyaK2sXislagtrc%3D

    CAS  Google Scholar 

  • S. Levy W.S. York R. Stuike-Prill B. Meyer L.A. Staehelin (1991) ArticleTitleSimulations of the static and dynamic molecular conformation of xyloglucan. The role of the fucosylated sidechain in surface-specific sidechain folding Plant J. 1 195–215 Occurrence Handle10.1111/j.1365-313X.1991.00195.x Occurrence Handle1:STN:280:DyaK3s3ltFSqtA%3D%3D

    Article  CAS  Google Scholar 

  • Lima D.U., Loh W. and Buckeridge M.S. 2004. Xyloglucan–cellulose interaction depends on the sidechains and molecular weight of xyloglucan. Plant Physiol. Biochem 42: 389–394.

    Google Scholar 

  • M.C. McCann B. Wells K. Roberts (1990) ArticleTitleDirect visualization of cross-links in the primary plant cell wall J. Cell Sci. 96 323–334

    Google Scholar 

  • K. Nishitani (1998) ArticleTitleConstruction and restructuring of the cellulose-xyloglucan framework in the apoplast as mediated by the xyloglucan-related protein family – a hypothetical scheme J. Plant Res. 111 1–8

    Google Scholar 

  • K. Ogawa T. Hayashi K. Okamura (1990) ArticleTitleConformational analysis of xyloglucans Int. J. Biol. Macromol. 12 218–222 Occurrence Handle1:CAS:528:DyaK3cXls1yqtbs%3D

    CAS  Google Scholar 

  • M. Pauly P. Albersheim A. Darvill W.S. York (1999) ArticleTitleMolecular domains of the cellulose/xyloglucan network in the cell walls of higher plants Plant J. 20 629–639 Occurrence Handle1:CAS:528:DC%2BD3cXpvFOktA%3D%3D

    CAS  Google Scholar 

  • M. Pauly Q. Qin H. Greene P. Albersheim A. Darvill W.S. York (2001) ArticleTitleChanges in the structure of xyloglucan during cell elongation Planta 212 842–850 Occurrence Handle1:CAS:528:DC%2BD3MXisFWjsLg%3D

    CAS  Google Scholar 

  • W.D. Reiter C.C.S. Chapple C.R. Somerville (1993) ArticleTitleAltered growth and cell wall in a fucose-deficient mutant of Arabidopsis Science 261 1032–1035 Occurrence Handle1:CAS:528:DyaK3sXlvF2ltb4%3D

    CAS  Google Scholar 

  • K. Ruel J.-P. Joseleau (1993) ArticleTitleInfluence of xyloglucan oligosaccharides on the micromorphology of the walls of suspension-cultured Rubus fruticosus cells Acta Bot. Neerl. 42 363–378 Occurrence Handle1:CAS:528:DyaK2cXhsFyqurg%3D

    CAS  Google Scholar 

  • V. Stevenson P. Albersheim (1986) ArticleTitleStructure of plant cell walls. An analysis of the extracellular polysaccharides of suspension-culture sycamore cells Plant Physiol. 80 1012–1019 Occurrence Handle1:CAS:528:DyaL28Xit1ajtr8%3D

    CAS  Google Scholar 

  • T. Takeda Y. Furuta T. Awano K. Mizuno Y. Mitsuishi T. Hayashi (2002) ArticleTitleSuppression and acceleration of cell elongation by integration of xyloglucans in pea segments Proc. Natl. Acad. Sci. USA 99 9055–9060 Occurrence Handle1:CAS:528:DC%2BD38XltF2hu7w%3D

    CAS  Google Scholar 

  • J.E. Thomson S.C. Fry (2000) ArticleTitleEvidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells Planta 211 275–286

    Google Scholar 

  • C. Tokoh K. Takabe J. Sugiyama M. Fujita (2002) ArticleTitleCP/MAS 13C NMR and electron diffraction study of bacterial cellulose structure affected by cell wall polysaccharides Cellulose 9 351–360 Occurrence Handle1:CAS:528:DC%2BD38XovVGisbg%3D

    CAS  Google Scholar 

  • K.I. Uhlin R.H. Atalla N.S. Thompson (1995) ArticleTitleInfluence of hemicelluloses on the aggregation patterns of bacterial cellulose Cellulose 2 129–144 Occurrence Handle1:CAS:528:DyaK28Xls1Cjsbk%3D

    CAS  Google Scholar 

  • D.M. Updegraff (1969) ArticleTitleSemimicro determination of cellulose in biological materials Anal. Biochem. 32 420–424 Occurrence Handle1:CAS:528:DyaE3cXivVOltQ%3D%3D

    CAS  Google Scholar 

  • B.S. Valent P. Albersheim (1974) ArticleTitleThe structure of plant cell walls. V. On the binding of xyloglucan to cellulose fibers Plant Physiol. 54 105–108 Occurrence Handle1:CAS:528:DyaE2cXls1KmtLc%3D Occurrence Handle10.1104/pp.54.1.105

    Article  CAS  Google Scholar 

  • G.F. Vanzin M. Madson N.C. Carpita N.V. Raikhel K. Keegstra W.D. Reiter (2002) ArticleTitleThe mur2 mutant of Arabidopsis thaliana lacks fucosylated xyloglucan because of a lesion in fucosyltransferase AtFUT1 Proc. Natl. Acad. Sci. USA 99 3340–3345 Occurrence Handle1:CAS:528:DC%2BD38Xit1Cqt74%3D

    CAS  Google Scholar 

  • B. Vian M. Temsah D. Reis J.-C. Roland (1992) ArticleTitleCo-localization of the cellulose framework and cell-wall matrix in helicoidal constructions J. Microsc. 166 111–122

    Google Scholar 

  • J.-P. Vincken A. de Keizer G. Beldman A.G.J. Voragen (1995) ArticleTitleFractionation of xyloglucan fragments and their interaction with cellulose Plant Physiol. 108 1579–1585 Occurrence Handle1:CAS:528:DyaK2MXnsVagsbc%3D

    CAS  Google Scholar 

  • S.E.C. Whitney J.E. Brigham A.H. Darke J.S.G. Reid M.J. Gidley (1995) ArticleTitleIn vitro assembly of cellulose/xyloglucan networks: ultrastructural and molecular aspects Plant J. 8 491–504 Occurrence Handle1:CAS:528:DyaK2MXpslSnurs%3D

    CAS  Google Scholar 

  • S.E.C. Whitney J.E. Brigham A.H. Darke J.S.G. Reid M.J. Gidley (1998) ArticleTitleStructural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose Carbohydr. Res. 307 299–309 Occurrence Handle1:CAS:528:DyaK1cXksVWmtrY%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Joseleau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chambat, G., Karmous, M., Costes, M. et al. Variation of xyloglucan substitution pattern affects the sorption on celluloses with different degrees of crystallinity. Cellulose 12, 117–125 (2005). https://doi.org/10.1007/s10570-004-1040-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-004-1040-z

Keywords

Navigation