Advertisement

Cellulose

, Volume 12, Issue 2, pp 159–165 | Cite as

Melting cellulose

  • Johannes SchroeterEmail author
  • Florian Felix
Article

Abstract

Cellulose has been deformed plastically by the use of mechanical shear, uniaxial pressure, and laser radiation. Felty specimens either from wood pulp or cotton wool were converted to thin compact transparent disks. Afterwards, the disks were examined by IR-spectroscopy, light microscopy, and scanning electron microscopy. This novel approach may pave the way for a new method to convert natural cellulose to plastic products (fibres, films), thus widening the use of nature’s most frequent polymer.

Keywords

Cellulose Laser Melting Plastification Pressure Shear 

Abbreviations

λ

wavelength

I

intensity

P

power

SEM

scanning electron microscope

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Back, E. 1973Cellulose bei hohen Temperaturen: Selbstvernetzung, Glasumwandlung und Schmelzen unter Einwirkung von LaserstrahlenDas Papier27475483Google Scholar
  2. Calahorra, M.E., Cortázar, M., Eguizabal, J.I., Guzman, G.M. 1989Thermogravimetric analysis of cellulose: effect of molecular weight in thermal decompositionJ. Appl. Polym. Sci.3733053314Google Scholar
  3. Clark, J. 1984New thoughts on cellulose bondingTAPPI J.678283Google Scholar
  4. Fengel D. and Wegener G. 1984. Wood. Chemistry, ultrastructure, reactions De Gruyter, Berlin, Germany, p. 69.Google Scholar
  5. Frank, A. 1996Kunststoffkompendium. 4th. ed.VogelWürzburg, Germany416Google Scholar
  6. German Federal Ministry for Labor. (ed.), 1964. Erkrankungen durch Schwefelkohlenstoff Merkblatt zu BK Nr. 18 der Anl. 1 zur 7. BKVO Bek. des BMA v. 24.2.1964, BArbB Fachteil Arbeitsschutz 1964, 31.Google Scholar
  7. Gilbert, R.D., Kadla, J.F. 1998Polysaccharides – celluloseKaplan, D.L. eds. Biopolymers from Renewable ResourcesSpringerBerlin, Germany79Google Scholar
  8. Krässig, H., Steadman, R.G., Schliefer, K., Albrecht, W. 1986CelluloseElvers, B. eds. Ullmann’s Encyclopedia of Industrial ChemistryVCH VerlagsgesellschaftWeinheim, Germany5th ed., Vol. A5Google Scholar
  9. Menges, G. 1990Werkstoffkunde Kunststoffe. 3rd edHanserMunich, Germany29Google Scholar
  10. Nordin, S., Nyrén, J., Back, E. 1973Note on molten cellulose produced by a laser beamSvensk Papperstidning.76609610Google Scholar
  11. Nordin, S., Nyrén, J., Back, E. 1974An indication of molten cellulose produced in a laser beamText. Res. J.44152154Google Scholar
  12. Schroeter, J., Endres, H.J. 1992Mechanische Eigenschaften thermoplastisch verarbeiteter KartoffelstärkeKunststoffe8210861089Google Scholar
  13. Shirashi, N., Aoki, T., Norimoto, M., Okumura, M. 1983Make cellulosics thermoplasticChemtech13366373Google Scholar
  14. Steiner, T. 2002The hydrogen bond in the solid stateAngew. Chem. Int. Ed. Engl.414876Google Scholar
  15. Stepto, R.F.T., Tomka, I. 1987Injection molding of natural hydrophylic polymers in the presence of waterChimia4116591663Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of Plastics EngineeringRosenheim University of Applied SciencesRosenheimGermany
  2. 2.Garmisch-PartenkirchenGermany

Personalised recommendations