, Volume 12, Issue 1, pp 5–14 | Cite as

Determination of the 13C chemical shift anisotropies of cellulose I and cellulose II

  • Stephanie HesseEmail author
  • Christian Jäger


The chemical shift anisotropies (CSAs) of cellulose Iα and Iβ, the two crystalline constituents of bacterial cellulose produced by Acetobacter xylinum (DSM 14666), and regenerated cellulose II are reported for each of the spectroscopically resolved carbon resonances using the phase adjusted spinning sideband (PASS) experiment. The data are compared with experimental results using the recoupling of anisotropy information (RAI) technique and with theoretical calculations of the structure of cellulose, including the hydrogen bonding systems.


Acetobacter xylinum Bacterial cellulose Cellulose I Cellulose II Chemical shift anisotropy CSA 13C NMR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alderman, D.W., McGeorge, G., Hu, J.Z., Pugmire, R.J., Grant, D.M. 1998A sensitivehigh resolution magic angle turning experiment for measuring chemical shift tensor principal valuesMol. Phys.9511131126Google Scholar
  2. 2.
    Antzutkin, O.N., Shekar, S.C., Levitt, M.H. 1995Two-dimensional sideband separation in magic-angle-spinning NMRJ. Magn. Reson. A115719Google Scholar
  3. 3.
    Atalla, R.H., Gast, J.C. 198013C NMR spectra of cellulose polymorphsJ. Am. Chem. Soc.10232493251Google Scholar
  4. 4.
    Atalla, R.H., VanderHart, D.L. 1984Native cellulose: a composite of two distinct crystalline formsScience223283284Google Scholar
  5. 5.
    Bax, A., Szeverenyi, N.M., Maciel, G.E. 1983aCorrelation of isotropic shifts and chemical shift anisotropies by two-dimensional Fourier-transform magic-angle hopping NMR spectroscopyJ. Magn. Reson.52147152Google Scholar
  6. 6.
    Bax, A., Szeverenyi, N.M., Maciel, G.E. 1983bChemical shift anisotropy in powdered solids studied by 2D FT NMR with flipping of the spinning axisJ. Magn. Reson.55494497Google Scholar
  7. 7.
    Dudley, R.L., Fyfe, C.A., Stephenson, P.J., Deslandes, Y., Hamer, G.K., Marchessault, R.H. 1983High-resolution 13C CP/MAS NMR spectra of solid cellulose oligomers and the structure of cellulose IIJ. Am. Chem. Soc.10524692472Google Scholar
  8. 8.
    Earl, W.L., VanderHart, D.L. 1980High resolution magic angle sample spinning 13C NMR of solid cellulose IJ. Am. Chem. Soc.10232513252Google Scholar
  9. 9.
    Earl, W.L., VanderHart, D.L. 1982Measurement of 13C chemical shifts in solidsJ. Magn. Reson.483554Google Scholar
  10. 10.
    Erata, T., Shikano, T., Yunoki, S., Takai, M. 1997The complete assignment of the 13C CP/MAS NMR spectrum of native cellulose by using 13C labeled glucoseCellulose Commun.4128131Google Scholar
  11. 11.
    Gagnaire, D., Mancier, D., Vincendon, M. 1980Cellulose organic solutions: a nuclear magnetic resonance investigationJ. Polym. Sci. Polym. Chem. Ed.181325Google Scholar
  12. 12.
    Gan, Z. 1994Spinning-sideband suppression using a pseudo-two-dimensional experimentJ. Magn. Reson.109253255Google Scholar
  13. 13.
    Gast, J.C., Atalla, R.H., McKelvey, R.D. 1980The Carbon-13 NMR spectra of the xylo- and cellooligosaccharidesCarbohydr. Res.84137146Google Scholar
  14. 14.
    Herzfeld, J., Berger, A.E. 1980Sideband intensities in NMR spectra of samples spinning at the magic angleJ. Chem. Phys.7360216030Google Scholar
  15. 15.
    Hesse, St. 1998NMR-Untersuchungen von Cellulosen und BiopolymerenDiploma ThesisIOQ/HFFSU JenaGermanyGoogle Scholar
  16. 16.
    Horii, F., Hirai, A., Kitamaru, R. 1983Solid-state 13C-NMR study of conformations of oligosaccharides and cellulose: conformation of CH2OH group about the exo-cyclic C–C bondPolym. Bull.10357361Google Scholar
  17. 17.
    Hu, J.Z., Wang, W., Liu, F., Solum, M.S., Alderman, D.W., Pugmire, R.J., Grant, D.M. 1995Magic-angle-turning experiments for measuring chemical-shift-tensor principal values in powdered solidsJ. Magn. Reson. A133210222Google Scholar
  18. 18.
    Inoue, Y., Chujo, R. 1978The carbon-13 NMR spectra of (1→4)-linked β-d-gluco-oligosaccharidesCarbohydr. Res.60367370Google Scholar
  19. 19.
    C.Jaeger, J.Pauli, H.-P. Schmauder 2004 Observation of the glycosidic bond and complete ring assignment of the carbons in uniformly 13C labeled bacterial cellulose Macromolecules submittedGoogle Scholar
  20. 20.
    Koch, F.-Th., Priess, W., Witter, R., Sternberg, U. 2000Calculation of solid-state 13C NMR spectra of cellulose IαIβ and II using a semi-empirical approach and molecular dynamicsMacromol. Chem. Phys.20119301939Google Scholar
  21. 21.
    Kolpak, F.J., Blackwell, J. 1976Determination of the structure of cellulose IIMacromolecules9273278Google Scholar
  22. 22.
    Kono, H., Yunoki, S., Shikano, T., Fujiwara, M., Erata, T., Takai, M. 2002CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native celluloseJ. Am. Chem. Soc.12475067511Google Scholar
  23. 23.
    Kono, H., Erata, T., Takai, M. 2003Determination of the through-bond carbon–carbon and carbon–proton connectivities of the native celluloses in the solid stateMacromolecules3651315138Google Scholar
  24. 24.
    Langan, P., Nishiyama, Y., Chanzy, H. 1999A revised structure and hydrogen-bonding system in cellulose II from a neutron fiber diffraction analysisJ. Am. Chem. Soc.12199409946Google Scholar
  25. 25.
    Lesage, A., Bardet, M., Emsley, L. 1999Through-bond carbon–carbon connectivities in disordered solids by NMRJ. Am. Chem. Soc.1211098710993Google Scholar
  26. 26.
    Maciel, G.E., Szeverenyi, N.M., Sardashti, M. 1985Chemical-shift-anisotropy powder patterns by the two-dimensional angle-flipping approach. Effects of crystallite packingJ. Magn. Reson.64365374Google Scholar
  27. 27.
    Mason, J. 1993Convention for the reporting of nuclear magnetic shielding (or shifts) tensors suggested by participants in the NATO ARW on NMR shielding constants at the University of MarylandCollege Park, July 1992Solid State Nucl. Magn. Res.2285288Google Scholar
  28. 28.
    Nishiyama, Y., Langan, P., Chanzy, H.J. 2002Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffractionJ. Am. Chem. Soc.12490749082Google Scholar
  29. 29.
    Nishiyama, Y., Sugiyama, J., Chanzy, H., Langan, P. 2003Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffractionJ. Am. Chem. Soc.1251430014306Google Scholar
  30. 30.
    Raymond, S., Kvick, A., Chanzy, H. 1995The structure of cellulose II: a revisitMacromolecules2884228425Google Scholar
  31. 31.
    Schramm, M., Hestrin, S. 1954Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinumJ. Gen. Microbiol.11123129Google Scholar
  32. 32.
    Sternberg, U., Möllhoff, M. 2001Molecular mechanics with fluctuating atomic charges – a new force field with a semi-empirical charge calculationJ. Mol. Model.790102Google Scholar
  33. 33.
    Sternberg, U., Koch, F.-Th., Priess, W., Witter, R. 2003Crystal structure refinements of cellulose polymorphs using solid-state 13C chemical shiftsCellulose10189199Google Scholar
  34. 34.
    Sugiyama, J., Persson, J., Chanzy, H. 1991aCombined infrared and electron diffraction study of the polymorphism of native cellulosesMacromolecules2424612466Google Scholar
  35. 35.
    Sugiyama, J., Vuong, R., Chanzy, H. 1991bElectron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wallMacromolecules2441684175Google Scholar
  36. 36.
    Szeverenyi, N.M., Bax, A., Maciel, G.E. 1985Magic-angle hopping as an alternative to magic-angle spinning for solid state NMRJ. Magn. Reson.61440447Google Scholar
  37. 37.
    Tycko, R., Dabbagh, G., Mirau, P.A. 1989Determination of chemical-shift-anisotropy lineshapes in a two-dimensional magic-angle-spinning NMR experimentJ. Magn. Reson.85265274Google Scholar
  38. 38.
    VanderHart, D.L., Atalla, R.H. 1984Studies of microstructure in native cellulose using solid-state 13C NMRMacromolecules1714651472Google Scholar
  39. 39.
    VanderHart, D.L., Atalla, R.H. 1987Further carbon-13 NMR evidence for the coexistence of two crystalline forms in native cellulosesAtalla, R.H. eds. The Structures of Celluloses. ACS Symp. Ser., 340American Chemical SocietyWashington, DC88118Google Scholar
  40. 40.
    Wickholm, K., Hult, E.-L., Larsson, P.T., Iversen, T., Lennholm, H. 2001Quantification of cellulose forms in complex cellulose materials: a chemometric modelCellulose8139148Google Scholar
  41. 41.
    Witter, R., Hesse, St., Sternberg, U. 2003New powder pattern recoupling at 10 kHz spinning speed applied to celluloseJ. Magn. Reson.1613542Google Scholar
  42. 42.
    Zollfrank, C. 1999Darstellung von Cellulose-II-Einkristallen und Untersuchung ihrer KristallstrukturDissertationHFMTU München, GermanyGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Institute of Optics and Quantum ElectronicsFriedrich-Schiller-Universität JenaJenaGermany
  2. 2.Federal Institute for Materials Research and Testing, Project Group I.3903BerlinGermany

Personalised recommendations