Abstract
Modern lunar-planetary ephemerides are numerically integrated on the observational timespan of more than 100 years (with the last 20 years having very precise astrometrical data). On such long timespans, not only finite difference approximation errors, but also the accumulating arithmetic roundoff errors become important because they exceed random errors of high-precision range observables of Moon, Mars, and Mercury. One way to tackle this problem is using extended-precision arithmetics available on x86 processors. Noting the drawbacks of this approach, we propose an alternative: using double–double arithmetics where appropriate. This will allow to use only double-precision floating-point primitives, which have ubiquitous support.
This is a preview of subscription content, access via your institution.



















Data availability
The program code and data used for numerical integration in this work are available online: https://github.com/S1ckick/Nbodies.
Notes
PECEC stands for “Predict–Evaluate–Correct–Evaluate–Correct” mode in the predictor–corrector scheme that is used to approximately solve the implicit equation of the state of the system on the next step. In PECEC mode, the right-hand part of the system of differential equations is evaluated twice: the first time for the state predicted by the Adams–Bashforth formula and the second time for the state corrected by the Adams–Moulton formula. The state is then again corrected for the next step.
The semimajor axis of the orbit of the Moon in the ephemeris strongly correlates with X-coordinates of retroreflectors; hence, the said coordinates have the uncertainty of about 3 cm at best Pavlov (2019). However, it still makes sense to require better accuracy in lunar ephemeris when geocentric coordinates of the retroreflectors are of interest; in those coordinates, the uncertainties of the X-coordinates of retroreflectors and the semimajor axis of the orbit of the Moon are largely canceled out.
In a multistep scheme, the approximations are slightly different near the ends of the timespan of integration due to the “warm-up” stage, but as we will later see, this difference does not make any noticeable impact.
“BC” stands for “before Chez”, the Racket compiler and virtual machine that existed before they were replaced with Chez Scheme, but are still supported.
References
Aksim, D., Pavlov, D.: On the extension of Adams–Bashforth–Moulton Methods for numerical integration of delay differential equations and application to the Moon’s orbit. Math. Comput. Sci. 14, 103–109 (2020). https://doi.org/10.1007/s11786-019-00447-y
ARM: VFP11Vector Floating-point Coprocessor for ARM1136JF-S processor r1p5. Technical reference manual (2007). Published online by ARM https://documentation-service.arm.com/static/ 5e8e227c88295d1e18d377ac
Courde, C., Torre, J.M., Samain, E., Martinot-Lagarde, G., Aimar, M., Albanese, D., Exertier, P., Fienga, A., Mariey, H., Metris, G., Viot, H., Viswanathan, V.: Lunar laser ranging in infrared at the Grasse laser station. A &A 602, 90 (2017). https://doi.org/10.1051/0004-6361/201628590
Fienga, A., Deram, P., Di Ruscio, A., Viswanathan, V., Camargo, J.I.B., Bernus, L., Gastineau, M., Laskar, J.: INPOP21a planetary ephemerides. Notes Scientifiques et Techniques de l’Institut de Mécanique Céleste, S110, Observatoire de Paris (2021). https://www.imcce.fr/content/medias/recherche/equipes/asd/inpop/inpop21a.pdf
Fienga, A., Manche, H., Laskar, J., Gastineau, M.: INPOP06: a new numerical planetary ephemeris. A &A 477(1), 315–327 (2008). https://doi.org/10.1051/0004-6361:20066607
Hida, Y., Li, S., Bailey, D.: Library for double-double and quad-double arithmetic. Technical report, Lawrence Berkeley National Laboratory (2008). https://www.davidhbailey.com/dhbpapers/qd.pdf
Kan, M., Pavlov, D.: Dynamical estimation of masses of the Main Asteroid Belt and some individual asteroids within the EPM ephemeris using infrared data. In: Astronomy at the Epoch of Multimessenger Studies. Proceedings of the VAK-2021 Conference, pp. 93–95. SAI MSU, INASAN, Moscow (2022). https://www.vak2021.ru/wp-content/uploads/2022/03/VAK_2021_proceedings.pdf
Karp, A.H., Markstein, P.: High-precision division and square root. ACM Trans. Math. Softw. 23(4), 561–589 (1997). https://doi.org/10.1145/279232.279237
Krogh, F.T.: An Adams Guy Does the Runge–Kutta. Section 395. Computing Memorandum 554., California Institute of Technology (1997). https://trs.jpl.nasa.gov/bitstream/handle/2014/22564/97-1071.pdf
Kuchynka, P., Folkner, W.M., Konopliv, A.S.: Station-Specific Errors in Mars Ranging Measurements. Interplanetary Network Progress Report 42-190, NASA JPL (2012). https://ipnpr.jpl.nasa.gov/progress_report/42-190/190C.pdf
Muller, J.-M., Brisebarre, N., Dinechin, F., Jeannerod, C.-P., Lefevre, V., Melquiond, G., Revol, N., Stehle, D., Torres, S.: Handbook of Floating-Point Arithmetic (2010). https://doi.org/10.1007/978-0-8176-4705-6
Murphy, T.W., Adelberger, E.G., Battat, J.B.R., Hoyle, C.D., Johnson, N.H., McMillan, R.J., Stubbs, C.W., Swanson, H.E.: APOLLO: millimeter lunar laser ranging. Class. Quantum Gravity 29(18), 184005 (2012). https://doi.org/10.1088/0264-9381/29/18/184005
Park, R.S., Folkner, W.M., Williams, J.G., Boggs, D.H.: The JPL planetary and lunar ephemerides DE440 and DE441. Astron. J. 161(3), 105 (2021). https://doi.org/10.3847/1538-3881/abd414
Pavlov, D.: Role of lunar laser ranging in realization of terrestrial, lunar, and ephemeris reference frames. J. Geod. 94(1), 5 (2019). https://doi.org/10.1007/s00190-019-01333-y
Pavlov, D., Williams, J., Suvorkin, V.: Determining parameters of Moon’s orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models. Celest. Mech. Dyn. Astron. 126(1), 61–88 (2016). https://doi.org/10.1007/s10569-016-9712-1
Pitjeva, E.V., Pitjev, N.P.: Masses of the main asteroid belt and the Kuiper belt from the motions of planets and spacecraft. Astron. Lett. 44(8–9), 554–566 (2018). https://doi.org/10.1134/s1063773718090050
Pitjeva, E.V., Pitjev, N.P.: Mass of the Kuiper belt. Celest. Mech. Dyn. Astron. 130(9), 57 (2018). https://doi.org/10.1007/s10569-018-9853-5
Pitjeva, E., Pavlov, D., Aksim, D., Kan, M.: Planetary and lunar ephemeris EPM2021 and its significance for solar system research. Proc. Int. Astron. Union 15(S364), 220–225 (2022). https://doi.org/10.1017/S1743921321001447
Precision and Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs. White paper TB-06711-001_v12.0, NVIDIA Corporation (2022). https://docs.nvidia.com/cuda/pdf/Floating_Point_on_NVIDIA_GPU.pdf
Simon, J.-L., Francou, G., Fienga, A., Manche, H.: New analytical planetary theories VSOP2013 and TOP2013. A &A 557, 49 (2013). https://doi.org/10.1051/0004-6361/201321843
Standish, E. M., Newhall, X. X., Williams, J. G., Yeomans, D. K.: Orbital ephemerides of the Sun, Moon, and planets. In: Seidelmann, P.K. (ed.), Explanatory Supplement to the Astronomial Almanac, pp. 279–374. University Science Books, Herndon, VA (1992). https://ssd.jpl.nasa.gov/ftp/eph/planets/ioms/ExplSupplChap8.pdf
Standish, E.M.: JPL Planetary Ephemeris DE410. Jet Propulsion Laboratory Interoffice Memorandum 312.N–03–009, California Institute of Technology (2003). https://ssd.jpl.nasa.gov/ftp/eph/planets/ioms/de410.iom.pdf
VFP11Vector Floating-point Coprocessor. Technical reference manual, ARM (2007). https://documentation-service.arm.com/static/5e8e227c88295d1e18d377ac
Waterman, A., Asanović, K.: The RISC-V Instruction Set Manual. Volume I: Unprivileged ISA. Technical report, RISC-V International (2019). https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
Whitehead, N., Fit-Florea, Alex: CUDA: Floating Point and IEEE 754. Release 12.1. (2023). Published online by NVidia at https://docs.nvidia.com/cuda/pdf/Floating_Point_on_NVIDIA_GPU.pdf
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Subbotin, M., Kodukov, A. & Pavlov, D. Reducing roundoff errors in numerical integration of planetary ephemeris. Celest Mech Dyn Astron 135, 23 (2023). https://doi.org/10.1007/s10569-023-10139-2
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10569-023-10139-2