Skip to main content
Log in

A study of periodic orbits near Europa

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Periodic orbits and their invariant manifolds are known to be useful for transportation in space, but a large portion of the related research goes toward a small number of periodic orbit families that are relatively simple to compute. In this study, motivated by a search for new and lesser-known families of useful periodic orbits, the bifurcation diagram near Europa is explored and 400 bifurcation points are found. Families are generated for 74 of these and provided in a publicly accessible database. Of these 74 generated families, those that also appear to exist in a model perturbed by certain zonal harmonics of Jupiter and Europa are identified. Differential corrections techniques are discussed, and a new method for natural parameter continuation in the three-body problem is presented. Periodic orbits with particularly useful geometric and stability properties for science purposes are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Abouelmagd, E.I., Asiri, H.M., Sharaf, M.A.: The effect of oblateness in the perturbed restricted three-body problem. Meccanica 48(10), 2479–2490 (2013)

    Article  MathSciNet  Google Scholar 

  • Abouelmagd, E.I., Alhothuali, M.S., Guirao, J.L., Malaikah, H.M.: Periodic and secular solutions in the restricted three-body problem under the effect of zonal harmonic parameters. Appl. Math. Inform. Sci. 9(4), 1659–1669 (2015)

    MathSciNet  Google Scholar 

  • Allgower, E.L., Georg, K.: Introduction to numerical continuation methods. Soc. Indust. Appl. Math. (2003). https://doi.org/10.1137/1.9780898719154

    Article  MATH  Google Scholar 

  • Anderson, R.L.: Tour design using resonant-orbit invariant manifolds in patched circular restricted three-body problems. J. Guidance Control Dyn. 44(1), 106–119 (2021)

    Article  ADS  Google Scholar 

  • Anderson, R.L., Lo, M.W.: Role of invariant manifolds in low-thrust trajectory design. J. Guidance Control Dyn. 32(6), 1921–1930 (2009)

    Article  ADS  Google Scholar 

  • Beyn, W. J., Champneys, A., Doedel, E., Govaerts, W., Kuznetsov, Y. A., Sandstede, B.: Numerical continuation, and computation of normal forms, In: Handbook of Dynamical Systems (1999). https://www.researchgate.net/publication/2357536_Numerical_Continuation_And_Computation_Of_Normal_Forms

  • Bolliger, M. J.: Cislunar mission design- transfers linking near rectilinear halo orbits and the butterfly family. PhD Thesis, Purdue University (2019)

  • Bosanac, N.: Leveraging natural dynamical structures to explore multi-body systems. PhD Thesis, Purdue University (2016)

  • Bradie, B.: A Friendly Introduction to Numerical Analysis. Pearson Prentice Hall, New Jersey (2006)

    Google Scholar 

  • Broucke, R.A.: Periodic orbits in the restricted three-body problem with earth-moon masses. NASA Tech. Rep. 32–1168, 1–92 (1968)

    Google Scholar 

  • Broucke, R.: Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J. 7(6), 1003–1009 (1969)

    Article  ADS  Google Scholar 

  • Bury, L., McMahon, J., Lo, M.: Low-energy boundaries on vertical motion near the secondary body. J. Astronaut. Sci. (2021)

  • Bury, L., McMahon, J., Lo, M.W.: Periodic orbits as viable landing solutions with an abort option at Europa, In: AAS Astrodynamics Specialists Conference, pp. 1–18. Big Sky, MT (2021)

  • Bury, L., McMahon, J.: The effect of zonal harmonics on dynamical structures in the circular restricted three-body problem near the secondary body, Celestial Mech. Dyn. Astron., 132(45) (2020)

  • Campbell, E. T.: Bifurcations from families of periodic solutions in the circular restricted problem with application to trajectory design. PhD Thesis, Purdue University (1999)

  • Doedel, E.J., Romanov, V.A., Paffenroth, R.C., Keller, H.B., Dichmann, D.J., Galan-Vioque, J., Vanderbauwhede, A.: Elemental periodic orbits associated with the Libration points in the circular restricted 3-body problem. Int. J. Bifurcation Chaos 17(8), 2625–2677 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  • Elshaboury, S.M.: The equilibrium solutions of restricted problem of three axisymmetric rigid bodies. Earth Moon Planets 45, 205–211 (1989)

    Article  ADS  Google Scholar 

  • Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial restricted three-body problem. Nonlinearity 17, 1571–1606 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • Grebow, D. J.: Trajectory design in the earth-moon system and lunar south pole coverage. PhD Thesis, Purdue University (2010)

  • Haapala, A. F.: Trajectory design in the spatial circular restricted three-body problem exploiting higher-dimensional poincare maps. PhD Thesis, Purdue University, (2014)

  • Hénon, M.: Generating Families in the Restricted Three-Body Problem. Springer, Berlin (1997)

    MATH  Google Scholar 

  • Hénon, M.: New families of periodic orbits in hill’s problem of three bodies. Celestial Mech. Dyn. Astron. 85(3), 223–246 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • Howell, K.C.: Three-dimensional, periodic, "halo " orbits. Celestial Mech. 32(1), 53–71 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  • Jacobson, R.: Jupiter satellite ephemeris file Jup310. NASA navigation and ancillary information facility (2009). https://naif.jpl.nasa.gov/pub/naif/generickernels/spk/satellites/jup310.cmt

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Constructing a low energy transfer between Jovian moons. Contemp. Math. 292, 129–146 (2001)

    Article  MathSciNet  Google Scholar 

  • Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, The Three-Body Problem, and Space Mission Design. Marsden Books, New Zealand (2006)

    MATH  Google Scholar 

  • Lara, M.: Simplified equations for computing science orbits around planetary satellites. J. Guidance Control Dyn. 31(1), 172–181 (2008)

    Article  ADS  Google Scholar 

  • Lara, M., Russell, R.: Computation of a science orbit about Europa. J. Guidance Control Dyn. 30(1), 259–263 (2007)

    Article  ADS  Google Scholar 

  • Lara, M., San Juan, J.F.: Dynamic behavior of an orbiter around Europa. J. Guidance Control Dyn. 28(2), 291–297 (2005)

    Article  ADS  Google Scholar 

  • Lara, M., Russell, R., Villac, B.: Classification of the distant stability regions at Europa. J. Guidance Control Dyn. 30(2), 409–418 (2007)

    Article  ADS  Google Scholar 

  • Lara, M., Pérez, I.L., López, R.: Higher order approximation to the hill problem dynamics about the Libration points. Commun. Nonlinear Sci. Numer. Simul. 59, 612–628 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  • Lo, M.W., Ross, S.D.: The lunar l1 gateway: portal to the stars and beyond, In: AIAA Space 2001 Conference. Albeuquerque, New Mexico (2001)

  • Lo, M.: Low-energy interplanetary transfers using lagrangian points: transport throughout the solar system using the invariant manifolds of unstable orbits generated by the lagrange points. Filed New Technology Report NPO-20377., Technical Report (1999)

  • Lo, M. W.: The interplanetary superhighway and the origins program, In: IEEE Aerospace Conference (2002)

  • Markellos, V.V., Douskos, C.N., Dimitriadis, K.P., Perdios, E.A.: Lyapunov orbits and asymptotic connections in the hill problem with oblateness, Recent Adv. Mech. Related Fields Honour of Prof. Constantine L, Goudas (2004)

  • Mittal, A., Ahmad, I., Bhatnagar, K.B.: Periodic orbits generated by Lagrangian solutions of the restricted three body problem when one of the primaries is an oblate body. Astrophys. Space Sci. 319(1), 63–73 (2009)

    Article  ADS  Google Scholar 

  • Papadakis, K.E., Zagouras, C.G.: Bifurcation points and intersections of families of periodic orbits in the three-dimensional restricted three-body problem. Astrophys. Space Sci. 199, 241–256 (1993)

    Article  ADS  Google Scholar 

  • Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste. Gauthier-Villars et Fils, Paris (1892)

    MATH  Google Scholar 

  • Pucacco, G.: Structure of the centre manifold of the L1, L2 collinear Libration points in the restricted three-body problem. Celestial Mech. Dyn. Astron. 131(10), 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  • Restrepo, R. L.: Patched periodic orbits: a systematic strategy for low-energy trajectory and moon tour design. PhD Thesis (2018)

  • Restrepo, R.L., Russell, R.P.: A database of planar axisymmetric periodic orbits for the solar system. Celestial Mech. Dyn. Astron. 130(7), 1–24 (2018)

    Article  MathSciNet  Google Scholar 

  • Robin, I.A., Markellos, V.V.: Numerical determination of three-dimensional periodic orbits generated from vertical self-resonant satellite orbits. Celestial Mech. 21, 395–434 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  • Russell, R.P.: Global search for planar and three dimensional periodic orbits near Europa. J. Astronaut. Sci. 54(2), 199–226 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Russell, R.P., Lam, T.: Designing ephemeris capture trajectories at Europa using unstable periodic orbits. J. Guidance Control Dyn. 30(2), 11–13 (2007)

    Google Scholar 

  • Schwaniger, A. J.: NASA technical note: trajectories in the earth-moon space with symmetrical free return properties, Lunar Flight Study Series, 5(D-1833) (1963)

  • Seydel, R.: Practical Bifurcation and Stability Analysis, vol. 8. Springer, New York, Dordrech Heidelberg London, 3rd ed. (2009)

  • Sharma, R. K.: Periodic orbits of collision in the restricted problem of three bodies in a three-dimensional coordinate system, when the bigger primary is an oblate spheroid, Indian Nat. Sci. Acade., 5(2), (1972)

  • Sharma, R. K.: Periodic orbits of collision in the restricted problem of three bodies, when the bigger primary is an oblate spheroid, Indian Nat. Sci. Acad., 4(4), (1972)

  • Sharma, R. K.: Periodic orbits of collision in the restricted problem of three bodies, when the bigger primary is slowly rotating oblate spheroid, Indian Nat. Sci. Acad., 5(2) (1972)

  • Singh, J., Umar, A.: Effect of oblateness of an artificial satellite on the orbits around the triangular points of the earth-moon system in the axisymmetric ER3BP. Differ. Equ. Dyn. Syst. 25(1), 11–27 (2017)

    Article  MathSciNet  Google Scholar 

  • Szebehely, V.: Theory of Orbits - The Restricted Problem of Three Bodies. Academic Press, New York (1967)

    MATH  Google Scholar 

  • The Math Works Inc., MATLAB R2021a, (2021)

  • Zamaro, M., Biggs, J.D.: Natural motion around the martian moon phobos: the dynamical substitutes of the Libration point orbits in an elliptic three-body problem with gravity harmonics. Celestial Mech. Dyn. Astron. 122, 263–302 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Zimovan-Spreen, E. M.: Trajectory design and targeting for applications to the exploration program in cislunar space. PhD Thesis, Purdue University (2021)

  • Zimovan-Spreen, E.M., Howell, K.C., Davis, D.C.: Near rectilinear halo orbits and nearby higher-period dynamical structures: orbital stability and resonance properties. Celestial Mech. Dyn. Astron. 132(5), 1–25 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this research was carried out at the University of Colorado at Boulder under a NASA Space Technology Research Fellowship (80NSSC18K1183). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NSSC18K1183). Special thanks are due to Emily Zimovan-Spreen who was a great help in overcoming certain hurdles of the bifurcation diagram process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Bury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Part of this research was carried out at the University of Colorado at Boulder under a NASA Space Technology Research Fellowship (80NSSC18K1183). Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NSSC18K1183).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bury, L., McMahon, J. & Lo, M. A study of periodic orbits near Europa. Celest Mech Dyn Astron 134, 27 (2022). https://doi.org/10.1007/s10569-022-10076-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-022-10076-6

Keywords

Navigation