Agekyan, T.A., Anosova, Z.P.: A study of the dynamics of triple systems by means of statistical sampling. Astron. Zh. 44, 1261 (1967)
ADS
Google Scholar
Agekyan, T.A., Anosova, ZhP, Orlov, V.V.: Decay time of triple systems. Astrophysics 19, 66 (1983). https://doi.org/10.1007/BF01005813. Translation of Astrofizika 19, 111 (1983)
ADS
Article
Google Scholar
Barrow-Green, J.: Poincaré and the Three Body Problem. American Mathematical Society, London (1996)
Book
Google Scholar
Boyd, P.T., McMillan, S.L.W.: Chaotic scattering in the gravitational three-body problem. Chaos 3, 507 (1993). https://doi.org/10.1063/1.165956
ADS
Article
Google Scholar
Bunimovich, L.A., Yurchenko, A.: Where to place a hole to achieve a maximal escape rate. Isr. J. Math. 182, 229 (2011)
MathSciNet
Article
Google Scholar
Chernov, N., Markarian, R., Troubetzkoy, S.: Invariant measures for Anosov maps with small holes. Ergod. Theory Dyn. Syst. 20, 1007 (2000)
MathSciNet
Article
Google Scholar
Cordani, B.: Geography of Order and Chaos in Mechanics. Springer, Birkhäuser (2013)
Book
Google Scholar
Euler, L.: De motu rectilineo trium corporum se mutuo attrahentium. Novi commentarii academiæ scientarum Petropolitanæ 11, 144151 (1767). in Oeuvres, Seria Secunda tome XXV Commentationes Astronomicæ (p. 286)
Fowler, R.H.: Statistical Mechanics, 2nd edn. Cambridge University Press, Cambridge (1936)
MATH
Google Scholar
Gaspard, P.: Chaos, Scattering and Statistical Mechanics. Cambridge University Press, Cambridge (1998)
Book
Google Scholar
Gibbs, J.W.: Statistical Mechanics. Charles Scribner’s Sons, New York (1902)
MATH
Google Scholar
Jacobi, C.G.J.: Sur le movement d’un point et sur un cas particulier du problème des trois corps. C. R. Acad. Sci. Paris 3, 59 (1836)
Google Scholar
Jeans, J.H.: Astronomy and Cosmogony. Dover Publications Inc., New York (1929)
MATH
Google Scholar
Lagrange, J.L.: Essai sur le Problème des Trois Corps, Prix de l’Académie Royale des Sciences de Paris, tome IX (1772), in vol. 6 of Oeuvres (p. 292)
Landau, L., Lifshitz, E.M.: Mechanics. Pergamon Press, London (1960). eq. (49.6) in 2nd edition
MATH
Google Scholar
Manwadkar, V., Kol, B., Trani, A.A., Leigh, N.W.C.: Testing the Flux-based statistical prediction of the Three-Body Problem. [arXiv:2101.03661 [astro-ph.EP]], under review in MNRAS
Manwadkar, V., Trani, A.A., Leigh, N.W.C.: Chaos and Lévy flights in the three-body problem. Mon. Not. Roy. Ast. Soc. 497, 3694 (2020). https://doi.org/10.1093/mnras/staa1722. [arXiv:2004.05475 [astro-ph.EP]]
ADS
Article
Google Scholar
Mathematica computing system, Wolfram Research
Monaghan, J.J.: Statistical-theory of the disruption of three-body systems—I. Low angular momentum. Mon. Not. Roy. Astron. Soc. 176, 63 (1976)
ADS
Article
Google Scholar
Monaghan, J.J.: Statistical-theory of the disruption of three-body systems - 2. High angular-momentum. Mon. Not. Roy. Astron. Soc. 177, 583 (1976)
ADS
Article
Google Scholar
Musielak, Z.E., Quarles, B.: The three-body problem. Rep. Prog. Phys. 77, 065901 (2014). https://doi.org/10.1088/0034-4885/77/6/065901. [arXiv:1508.02312 [astro-ph.EP]]
ADS
MathSciNet
Article
Google Scholar
Narnhofer, H., Thirring, W.: Canonical scattering transformation in classical mechanics. Phys. Rev. A 23, 1688 (1987)
ADS
MathSciNet
Article
Google Scholar
Nash, P.E., Monaghan, J.J.: Statistical-theory of the disruption of three-body systems—3. 3-dimensional motion. Mon. Not. Roy. Astron. Soc. 184, 119 (1978)
ADS
Article
Google Scholar
Newton, I.: Philosophiæ Naturalis Principia Mathematica (1687)
Orlov, V.V., Rubinov, A.V., Shevchenko, I.I.: The disruption of three-body gravitational systems: lifetime statistics. Mon. Not. Roy. Ast. Soc. 408, 1623 (2010). https://doi.org/10.1111/j.1365-2966.2010.17239.x
ADS
Article
Google Scholar
Ott, E., Tél, T.: Chaotic scattering: an introduction. Chaos 3, 4 (1993)
Article
Google Scholar
Poincaré, H.: Les méthodes nouvelles de la méchanique céleste. Gauthier-Villars et fils (1892)
Saslaw, W., Valtonen, M.J., Aarseth, S.J.: Gravitational slingshot and structure of extra-galactic radio-sources. Astrophys. J. 190, 253 (1974)
ADS
Article
Google Scholar
Seoane, J.M., Sanjuan, M.A.F.: New developments in classical chaotic scattering. Rep. Prog. Phys. 76, 016001 (2013)
ADS
Article
Google Scholar
Shevchenko, I.I.: Hamiltonian intermittency and Lévy flights in the three-body problem. Phys. Rev. E 81, 066216 (2010). https://doi.org/10.1103/PhysRevE.81.066216
ADS
MathSciNet
Article
Google Scholar
Standish, E.M.: Dynamical evolution of triple star systems—numerical study. Astr. Astrophys. 21, 185 (1972)
ADS
Google Scholar
Stone, N.C., Leigh, N.W.C.: A statistical solution to the chaotic, non-hierarchical three-body problem. Nature 576(7787), 406 (2019). https://doi.org/10.1038/s41586-019-1833-8
ADS
Article
Google Scholar
Valtonen, M.J.: Statistics of three body experiments. In: Kozai, Y. (ed.) “The Stability of the Solar System and of Small Stellar Systems,” symposium proceedings, p. 211. Reidel, Dordrecht (1974)
Chapter
Google Scholar
Valtonen, M.J.: The general three-body problem in astrophysics. Vistas in Astron. 32, 23 (1988). https://doi.org/10.1016/0083-6656(88)90395-9
ADS
MathSciNet
Article
Google Scholar
Valtonen, M.J., Aarseth, S.J.: Numerical experiments on the decay of three-body systems. Rev. Mex. Astron. Astrofiz. 3, 163 (1977)
ADS
Google Scholar
Valtonen, M.J., Karttunen, H.: The Three-Body Problem. Cambridge University Press, Cambridge (2006)
Book
Google Scholar
Valtonen, M.J., Anosova, J., Kholshevnikov, K., Mylläri, A., Orlov, V., Tanikawa, K.: The Three-body Problem from Pythagoras to Hawking. Springer, New York (2016)
Book
Google Scholar
Wikipedia, Characteristic function (probability theory)