Planar low-energy asteroid and comet transit analysis using isolating blocks

Abstract

Asteroids and comets often capture and sometimes transit near a planet by traveling through the \(\hbox {L}_1\) and \(\hbox {L}_2\) libration point gateways, and these regions are therefore key to understanding the mechanism by which captures, transits, and some potential impacts of these bodies occur. Isolating blocks have recently been used to provide a theoretically rigorous method for computing the invariant manifolds of libration point periodic orbits in the circular restricted three-body problem (CRTBP), and for an appropriate energy range, they can allow us to compute all possible transit trajectories at a particular Jacobi constant in the CRTBP. In this study, both \(\hbox {L}_1\) and \(\hbox {L}_2\) isolating blocks are found for the Sun–Earth and Sun–Jupiter CRTBP systems to rigorously compute trajectories transiting near the Earth and Jupiter in the low-energy regime common for asteroids and comets. The characteristics of these transit trajectories are explored, and individual trajectory solutions are analyzed in more detail. The transit trajectories are also characterized using their orbital elements and compared to known comets and asteroids.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. Anderson, B.D., Lo, M.W.: Dynamics of asteroid 2006b RH120: Pre-capture and post-capture phases. In: AAS/AIAA Space Flight Mechanics Meeting, AAS 16-484. Napa, California (2016)

  2. Anderson, R.L., Easton, R.W., Lo, M.W.: Computing libration point hyperbolic invariant sets using isolating blocks. In: AAS/AIAA Astrodynamics Specialist Conference, AAS 17-697, Stevenson, Washington (2017a)

  3. Anderson, R.L., Easton, R.W., Lo, M.W.: Isolating blocks as computational tools in the circular restricted three-body problem. Phys. D Nonlinear Phenom. 343, 38–50 (2017b)

    ADS  MathSciNet  Article  Google Scholar 

  4. Barden, B.T., Howell, K.C.: Fundamental motions near collinear libration points and their transitions. J. Astronaut. Sci. 46(4), 361–378 (1998)

    MathSciNet  Google Scholar 

  5. Chodas, P.W., Yeomans, D.K.: The orbital motion and impact circumstances of comet Shoemaker-Levy 9. In: Noll, K.S., Feldman, P.D., Weaver, H.A. (eds.) The Collision of Comet Shoemaker-Levy 9 and Jupiter, IAU Colloquium 156, pp. 1–30. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  6. Conley, C.C.: Notes on the restricted three body problem: Approximate behavior of solutions near the collinear Lagrangian points. Tech. Rep. TMX-53292, NASA, George C. Marshall Space Flight Center, Huntsville, Alabama (1965)

  7. Conley, C.: Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, 732–746 (1968)

    MathSciNet  Article  Google Scholar 

  8. Easton, R.W.: On the existence of invariant sets inside a submanifold convex to a flow. PhD thesis, University of Wisconsin (1967)

  9. Farquhar, R.W., Kamel, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7, 458–473 (1973)

    ADS  Article  Google Scholar 

  10. Gómez, G., Mondelo, J.M.: The dynamics around the collinear equilibrium points of the RTBP. Phys. D Nonlinear Phenom. 157(4), 283–321 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  11. Gómez, G., Masdemont, J., Simó, C.: Quasihalo orbits associated with libration points. J. Astronaut. Sci. 46(2), 135–176 (1998)

    MathSciNet  Google Scholar 

  12. Granvik, M., Virtanen, J., Oszkiewicz, D., Muinonen, K.: Openorb: open-source asteroid orbit computation software including statistical ranging. Meteorit. Planet. Sci. 44(12), 1853–1861 (2009). https://doi.org/10.1111/j.1945-5100.2009.tb01994.x

    ADS  Article  Google Scholar 

  13. Granvik, M., Vaubaillon, J., Jedicke, R.: The population of natural Earth satellites. Icarus 218, 262–277 (2012)

    ADS  Article  Google Scholar 

  14. Granvik, M., Jedicke, R., Bolin, B., Chyba, M., Patterson, G., Picot, G.: Earth’s temporarily-captured natural satellites—the first step towards utilization of asteroid resources. In: Badescu, V. (ed.) Asteroids, pp. 151–167. Springer, Berlin (2013)

    Google Scholar 

  15. Haro, A., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Rigorous results. J. Differ. Equ. 228, 530–579 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  16. Haro, A., de la Llave, R.: A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Explorations and mechanisms for the breakdown of hyperbolicity. SIAM J. Appl. Dyn. Syst. 6(1), 142–207 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  17. Howell, K.C., Breakwell, J.V.: Three-dimensional, periodic, ‘halo’ orbits. Celest. Mech. 32(1), 53–71 (1984)

    ADS  MathSciNet  Article  Google Scholar 

  18. Howell, K.C., Pernicka, H.J.: Numerical determination of Lissajous trajectories in the restricted three-body problem. Celest. Mech. 41, 107–124 (1988)

    ADS  Article  Google Scholar 

  19. Howell, K.C., Marchand, B., Lo, M.W.: Temporary satellite capture of short-period Jupiter family comets from the perspective of dynamical systems. J. Astronaut. Sci. 49(4), 539–557 (2001)

    MathSciNet  Google Scholar 

  20. Hueso, R., Wesley, A., Go, C., Pérez-Hoyos, S., Wong, M., Fletcher, L.N., et al.: First Earth-based detection of a superbolide on Jupiter. Astrophys. J. Lett. 721, L129 (2010)

    ADS  Article  Google Scholar 

  21. Jorba, A., Masdemont, J.: Dynamics in the center manifold of the collinear points of the restricted three body problem. Phys. D Nonlinear Phenom. 132(1–2), 189–213 (1999). https://doi.org/10.1016/S0167-2789(99)00042-1

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. Jorba, A., Villanueva, J.: Numerical computation of normal forms around some periodic orbits of the restricted three-body problem. Physica D 114(3–4), 197–229 (1998)

    ADS  MathSciNet  Article  Google Scholar 

  23. Kary, D.M., Dones, L.: Capture statistics of short-period comets: implications for comet D/Shoemaker-Levy 9. Icarus 121, 207–224 (1996)

    ADS  Article  Google Scholar 

  24. Kolemen, E., Kasdin, N.J., Gurfil, P.: Quasi-periodic orbits of the restricted three body problem made easy. In: Proceedings of the New Trends in Astrodynamics and Applications (2006)

  25. Kolemen, E., Kasdin, N.J., Gurfil, P.: Multiple Poincaré sections method for finding the quasiperiodic orbits of the restricted three-body problem. Celest. Mech. Dyn. Astron. 112, 47–74 (2012)

    ADS  Article  Google Scholar 

  26. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427–469 (2000)

    ADS  MathSciNet  Article  Google Scholar 

  27. Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Resonance and capture of Jupiter comets. Celest. Mech. Dyn. Astron. 81(1–2), 27–38 (2001)

    ADS  MathSciNet  Article  Google Scholar 

  28. Mondelo, J.M.: Contribution to the study of Fourier methods for quasi-periodic functions and the vicinity of the collinear libration points. PhD thesis, Universitat de Barcelona, Barcelona (2001)

  29. Olikara, Z.P.: Computation of quasi-periodic invariant tori in the restricted three-body problem. Master’s thesis, Purdue University, West Lafayette (2010)

  30. Olikara, Z.P., Howell, K.C.: Computation of quasi-periodic invariant tori in the restricted three-body problem. In: 20th AAS/AIAA Space Flight Mechanics Meeting, AAS 10-120, San Diego (2010)

  31. Olikara, Z.P., Scheeres, D.J.: Computing families of quasi-periodic tori in autonomous hamiltonian systems. In: 7th European Nonlinear Dynamics Conference, Rome (2011)

  32. Olikara, Z.P., Scheeres, D.J.: Numerical method for computing quasi-periodic orbits and their stability in the restricted three-body problem. In: 1st IAA Conference on Dynamics and Control of Space Systems, IAA-AAS-DyCoSS1-08-10, Porto (2012)

  33. Orton, G., Fletcher, L., Lisse, C., Chodas, P., Cheng, A., Yanamandra-Fisher, P., et al.: The atmospheric influence, size and possible asteroidal nature of the July 2009 Jupiter impactor. Icarus 211(1), 587–602 (2011). https://doi.org/10.1016/j.icarus.2010.10.010

    ADS  Article  Google Scholar 

  34. Richardson, D.L., Cary, N.D.: A uniformly valid solution for motion about the interior libration point of the perturbed elliptic-restricted problem. In: Paper AAS 75-021, AAS/AIAA Astrodynamics Specialist Conference, Nassau (1975)

  35. Sánchez-Lavega, A., Wesley, A., Orton, G., Hueso, R., Perez-Hoyos, S., Fletcher, L.N., et al.: The impact of a large object on Jupiter in 2009 July. Astrophys. J. Lett. 715(2), L155–L159 (2010)

    ADS  Article  Google Scholar 

  36. Toth, I.: Connections between asteroids and cometary nuclei. In: Daniela, L., Sylvio Ferraz, M., Angel, F.J. (eds.) Asteroids, Comets, Meteors, pp. 67–96. Cambridge University Press, Cambridge (2006a). https://doi.org/10.1017/S174392130500668X

    Article  Google Scholar 

  37. Toth, I.: The quasi-Hilda subgroup of ecliptic comets—an update (research note). Astron. Astrophys. 448, 1191–1196 (2006b)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

The research presented in this paper has been carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. This material is also based upon work supported by the National Science Foundation under Grant No. DMS-1440140, while the first author was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall, 2018 semester.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodney L. Anderson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anderson, R.L., Chodas, P.W., Easton, R.W. et al. Planar low-energy asteroid and comet transit analysis using isolating blocks. Celest Mech Dyn Astr 131, 32 (2019). https://doi.org/10.1007/s10569-019-9909-1

Download citation

Keywords

  • Asteroid
  • Comet
  • Isolating block
  • Transit