Abstract
This paper is concerned with the comparison of semi-analytical and non-averaged propagation methods for Earth satellite orbits. We analyze the total integration error for semi-analytical methods and propose a novel decomposition into dynamical, model truncation, short-periodic, and numerical error components. The first three are attributable to distinct approximations required by the method of averaging, which fundamentally limit the attainable accuracy. In contrast, numerical error, the only component present in non-averaged methods, can be significantly mitigated by employing adaptive numerical algorithms and regularized formulations of the equations of motion. We present a collection of non-averaged methods based on the integration of existing regularized formulations of the equations of motion through an adaptive solver. We implemented the collection in the orbit propagation code THALASSA, which we make publicly available, and we compared the non-averaged methods with the semi-analytical method implemented in the orbit propagation tool STELA through numerical tests involving long-term propagations (on the order of decades) of LEO, GTO, and high-altitude HEO orbits. For the test cases considered, regularized non-averaged methods were found to be up to two times slower than semi-analytical for the LEO orbit, to have comparable speed for the GTO, and to be ten times as fast for the HEO (for the same accuracy). We show for the first time that efficient implementations of non-averaged regularized formulations of the equations of motion, and especially of non-singular element methods, are attractive candidates for the long-term study of high-altitude and highly elliptical Earth satellite orbits.
Similar content being viewed by others
Notes
Regardless of the orbit propagation method, uncertainties in the orbit determination, in the predictions of solar activity, and in the modeling of the atmosphere–spacecraft interaction make GTOs unpredictable in the long term.
The US space object catalog is a public database of orbital data for more than 17 000 objects (at the time of writing). Access to the catalog is available at https://www.space-track.org/. Last visited: July 6, 2018.
http://gmatcentral.org/. Last visited: October 8, 2018.
Exceptions are given by translunar orbits, impulsive maneuvers, and the terminal phase of reentry trajectories.
https://logiciels.cnes.fr/content/stela?language=en. Last visited: May 31, 2018.
http://www.netlib.org/odepack/. Last visited: October 15, 2017.
The subroutine for the computation of the ephemerides was kindly provided by Florent Deleflie.
https://ccmc.gsfc.nasa.gov/pub/modelweb/atmospheric/msis/nrlmsise00/. Last visited: October 15, 2017.
http://www.dem.inpe.br/~val/atmod/default.html. Last visited: October 15, 2017.
https://gitlab.com/souvlaki/thalassa. Last visited: May 31, 2018.
http://space.skyrocket.de/doc_sdat/microsat-2.htm. Last visited: July 25, 2018.
References
Amato, D., Baù, G., Bombardelli, C.: Accurate orbit propagation in the presence of planetary close encounters. Mon. Not. R. Astron. Soc. 470(2), 2079–2099 (2017). https://doi.org/10.1093/mnras/stx1254
Amato, D., Rosengren, A.J., Bombardelli, C.: THALASSA: a fast orbit propagator for near-Earth and cislunar space. In: 2018 Space Flight Mechanics Meeting, American Institute of Aeronautics and Astronautics (2018). https://doi.org/10.2514/6.2018-1970
Anselmo, L., Cordelli, A., Farinella, P., Pardini, C., Rossi, A.: Modelling the evolution of the space debris population: recent research work in Pisa. In: 2nd European Conference on Space Debris, Darmstadt, Germany, ESA Special Publication, vol. 393, pp. 339–344 (1997). http://adsabs.harvard.edu/abs/1997ESASP.393..339A
Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics, revised edn. AIAA Education Series, American Institute of Aeronautics and Astronautics, Reston (1999). https://doi.org/10.2514/4.861543
Baù, G., Bombardelli, C.: Time elements for enhanced performance of the Dromo orbit propagator. Astronom. J. 148(3), 43 (2014). https://doi.org/10.1088/0004-6256/148/3/43
Baù, G., Urrutxua, H., Peláez, J.: EDromo: an accurate propagator for elliptical orbits in the perturbed two-body problem. Adv. Astronaut. Sci. 152, 379–399. Proceedings of the 24th AAS/AIAA Space Flight Mechanics Meeting, January 26–30, 2014, Santa Fe, New Mexico (2014)
Baù, G., Bombardelli, C., Peláez, J., Lorenzini, E.: Non-singular orbital elements for special perturbations in the two-body problem. Mon. Not. R. Astron. Soc. 454, 2890–2908 (2015). https://doi.org/10.1093/mnras/stv2106. http://adsabs.harvard.edu/abs/2015MNRAS.454.2890B
Biancale, R., Balmino, G., Lemoine, J.M., Marty, J.C., Moynot, B., Barlier, F., et al.: A new global Earth’s gravity field model from satellite orbit perturbations: GRIM5-s1. Geophys. Res. Lett. 27(22), 3611–3614 (2000). https://doi.org/10.1029/2000gl011721
Bond, V.R., Allman, M.C.: Modern Astrodynamics, pp. 117–146. Princeton University Press, Princeton (1996)
Broucke, R.: Regularized special perturbation techniques using Levi–Civita variables. In: 3rd and 4th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, Paper 66-8 (1966)
Brouwer, D.: On the accumulation of errors in numerical integration. Astronom. J. 46, 149–153 (1937). https://doi.org/10.1086/105423
Bull, J.M., Smith, L.A., Pottage, L., Freeman, R.: Benchmarking Java against C and Fortran for scientific applications. In: Proceedings of the 2001 Joint ACM-ISCOPE Conference on Java Grande, pp. 97–105. Association for Computing Machinery, Palo Alto (2001)
Burdet, C.A.: Le mouvement Keplerien et les oscillateurs harmoniques. J. Reine Angew. Math. 238, 71–84 (1969)
CNES (2016) STELA 3.1.1 user manual. Technical Report. https://logiciels.cnes.fr/sites/default/files/Stela-User-Manual_4.pdf
Coffey, S.L., Deprit, A., Miller, B.R.: The critical inclination in artificial satellite theory. Cel. Mech. 39(4), 365–406 (1986). https://doi.org/10.1007/bf01230483
Coffey, S.L., Neal, H.L., Visel, C.L., Conolly, P.: Demonstration of a special-perturbations-based catalog in the naval space command system. Adv. Astronaut. Sci. 99(1), 227–247 (1998)
Dahlquist, G., Björck, A.: Numerical Methods, pp. 1–20. Dover, Mineola (1974)
Danielson, D.A., Sagovac, C.P., Neta, B., Early, L.W.: Semianalytic satellite theory. Technical Report ADA276836, Department of Mathematics, Naval Postgraduate School, Monterey (1995)
Deprit, A.: Ideal elements for perturbed Keplerian motions. J. Res. Nat. Bur. Stand. 79, 1–15 (1975). http://adsabs.harvard.edu/abs/1975JRNBS..79....1D
Dichmann, D.J., Lebois, R., Carrico, J.P.: Dynamics of orbits near 3:1 resonance in the Earth–Moon system. J. Astronaut. Sci. 60(1), 51–86 (2013). https://doi.org/10.1007/s40295-014-0009-x
Eichhorn, H., Cano, J.L., McLean, F., Anderl, R.: A comparative study of programming languages for next-generation astrodynamics systems. CEAS Space J. 10(1), 115–123 (2017). https://doi.org/10.1007/s12567-017-0170-8
Ely, T.A.: Mean element propagations using numerical averaging. J. Astronaut. Sci. 61(3), 275–304 (2014). https://doi.org/10.1007/s40295-014-0020-2
Ferrándiz, J.M.: A general canonical transformation increasing the number of variables with application in the two-body problem. Cel. Mech. 41, 343–357 (1988)
Giacaglia, G.E.O.: The equations of motion of an artificial satellite in nonsingular variables. Cel. Mech. 15, 191–215 (1977). https://doi.org/10.1007/BF01228462
Gkolias, I., Daquin, J., Gachet, F., Rosengren, A.J.: From order to chaos in Earth satellite orbits. Astron. J. 152(5), 119 (2016). https://doi.org/10.3847/0004-6256/152/5/119
Golikov, A.R.: THEONA—a numerical-analytical theory of motion of artificial satellites of celestial bodies. Cosm. Res. 50(6), 449–458 (2012). https://doi.org/10.1134/s0010952512060020
Hoots, F.R., Schumacher Jr., P.W., Glover, R.A.: History of analytical orbit modeling in the US space surveillance system. J. Guid. Control Dyn. 27(2), 174–185 (2004). https://doi.org/10.2514/1.9161
Jacchia, L.G.: Thermospheric temperature, density, and composition: new models. SAO Special Report 375 (1977)
Kaula, W.M.: Theory of Satellite Geodesy. Applications of Satellites to Geodesy. Blaisdell, Waltham (1966)
Klinkrad, H., Martin, C., Walker, R.: Space Debris Models and Risk Analysis. Springer, Berlin (2006). https://doi.org/10.1007/3-540-37674-7_5
Kustaanheimo, P., Stiefel, E.L.: Perturbation theory of Kepler motion based on spinor regularization. J. Reine Angew. Math. 218, 204–219 (1965)
Kwok, J.H.: The long-term orbit predictor (LOP). Report EM 312/86-151. Jet Propulsion Laboratory, Pasadena (1986)
Lamy, A., Le Fevre, C., Sarli, B.: Analysis of geostationary transfer orbit long term evolution and lifetime. In: Proceedings of the 22nd International Symposium on Space Flight Dynamics, San José dos Campos (2011)
Lara, M.: Note on the ideal frame formulation. Cel. Mech. Dyn. Astr. 129, 137–151 (2017). https://doi.org/10.1007/s10569-017-9770-z. http://adsabs.harvard.edu/abs/2017CeMDA.129..137L. arXiv:1612.08367
Lara, M., San-Juan, J.F., López, L.M., Cefola, P.J.: On the third-body perturbations of high-altitude orbits. Cel. Mech. Dyn. Astr. 113(4), 435–452 (2012). https://doi.org/10.1007/s10569-012-9433-z
Lara, M., San-Juan, J.F., López-Ochoa, L.M.: Proper averaging via parallax elimination. Adv. Astronaut. Sci. 150, 315–331. Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, August 2013, Hilton Head (2013)
Lara, M., San-Juan, J.F., Hautesserres, D.: HEOSAT: a mean elements orbit propagator program for highly elliptical orbits. CEAS Space J. (2017). https://doi.org/10.1007/s12567-017-0152-x
Le Fèvre, C., Fraysse, H., Morand, H., Lamy, A., Cazaux, C., Mercier, P., et al.: Compliance of disposal orbits with the French space operations act: the good practices and the STELA tool. Acta Astronaut. 94(1), 234–245 (2014). https://doi.org/10.1016/j.actaastro.2013.07.038
Liou, J.C., Hall, D.T., Krisko, P.H., Opiela, J.N.: LEGEND—a three-dimensional LEO-to-GEO debris evolutionary model. Adv. Space Res. 34(5), 981–986 (2004). https://doi.org/10.1016/j.asr.2003.02.027
Möckel, M.: High performance propagation of large object populations in earth orbits. Ph.D. Thesis, Technische Universität Braunschweig, Braunschweig (2015)
Meeus, J.: Astronomical Algorithms. Willmann-Bell, Richmond (1998)
Milani, A., Nobili, A.M.: Integration error over very long time spans. Cel. Mech. 43, 1–34 (1987). https://doi.org/10.1007/BF01234550
Morand, V., Caubet, A., Deleflie, F., Daquin, J., Fraysse, H.: Semi analytical implementation of tesseral harmonics perturbations for high eccentricity orbits. Adv. Astronaut. Sci., Univelt, Inc., vol. 150, pp. 705–722. Proceedings of the AAS/AIAA Astrodynamics Specialist Conference, August 2013, Hilton Head, SC, USA (2013)
Morbidelli, A.: Modern Celestial Mechanics. Advances in Astronomy and Astrophysics. Taylor & Francis, London (2002)
Moser, J., Zehnder, E.J.: Notes on Dynamical Systems. Courant Lecture Notes in Mathematics. American Mathematical Society, Providence (2005)
Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999). https://doi.org/10.1017/cbo9781139174817
Nacozy, P.E., Dallas, S.S.: The geopotential in nonsingular orbital elements. Cel. Mech. 15, 453–466 (1977). https://doi.org/10.1007/BF01228611
NASA, NOAA and US Air Force: US Standard Atmosphere. Technical Report NASA-TM-X-74335, Washington, DC (1976)
Peláez, J., Hedo, J.M., Rodríguez de Andrés, P.: A special perturbation method in orbital dynamics. Cel. Mech. Dyn. Astr. 97, 131–150 (2007). https://doi.org/10.1007/s10569-006-9056-3. http://adsabs.harvard.edu/abs/2007CeMDA..97..131P
Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 107(A12), 15–16 (2002). https://doi.org/10.1029/2002JA009430
Pines, S.: Uniform representation of the gravitational potential and its derivatives. AIAA J. 11(11), 1508–1511 (1973). https://doi.org/10.2514/3.50619
Radhakrishnan, K., Hindmarsh, A.C.: Description and Use of LSODE, the Livermore Solver for Ordinary Differential Equations. Technical Report UCRL-ID-113855, Lawrence Livermore National Laboratory (1993)
Roa, J.: Regularization in Orbital Mechanics: Theory and Practice. De Gruyter, Berlin (2017). https://doi.org/10.1515/9783110559125. http://adsabs.harvard.edu/abs/2017rom..book.....R
Rossi, A., Anselmo, L., Pardini, C., Jehn, R., Valsecchi, G.B.: The new space debris mitigation (SDM 4.0) long term evolution code. In: 5th European Conference on Space Debris, Darmstadt, Germany, ESA Special Publication, vol. 672, p. 90 (2009). http://adsabs.harvard.edu/abs/2009ESASP.672E..90R
Sellamuthu, H., Sharma, R.K.: Orbit theory with lunar perturbation in terms of Kustaanheimo–Stiefel regular elements. J. Guid. Control Dyn. 40(5), 1272–1277 (2017). https://doi.org/10.2514/1.g002342
Sellamuthu, H., Sharma, R.K.: Hybrid orbit propagator for small spacecraft using Kustaanheimo–Stiefel elements. J. Spacecr. Rockets 55(5), 1282–1288 (2018). https://doi.org/10.2514/1.a34076
Setty, S., Cefola, P.J., Montenbruck, O., Fiedler, H.: Application of semi-analytical satellite theory orbit propagator to orbit determination for space object catalog maintenance. Adv. Space Res. 57, 2218–2233 (2016). https://doi.org/10.1016/j.asr.2016.02.028
Sperling, H.: Computation of Keplerian conic sections. J. Am. Rocket Soc. 31(5), 660–661 (1961)
Stiefel, E.L., Scheifele, G.: Linear and Regular Celestial Mechanics, Die Grundlehren der Mathematischen Wissenschaften, vol. 174. Springer, Berlin (1971). https://doi.org/10.1007/978-3-642-65027-7
Uphoff, C.: Numerical averaging in orbit prediction. AIAA J. 11(11), 1512–1516 (1973). https://doi.org/10.2514/3.50620
Vallado, D.A., Crawford, P., Hujsak, R., Kelso, T.S.: Revisiting Spacetrack Report #3. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, Colorado, United States. https://doi.org/10.2514/6.2006-6753. Paper AIAA 2006-6753 (2006)
van der Ha, J.C.: Long-term evolution of near-geostationary orbits. J. Guid. Control Dyn. 9(3), 363–370 (1986). https://doi.org/10.2514/3.20115
Williams, J., Senent, J.S., Ocampo, C., Ravi, M., Davis, E.C.: Overview and software architecture of the Copernicus trajectory design and optimization system. In: 4th International Conference on Astrodynamics Tools and Techniques. European Space Astronomy Centre (ESAC), Madrid (2010)
Acknowledgements
D. A. gratefully acknowledges the advice by Juan-Félix San Juan, Martin Lara, Denis Hautesserress, and Florent Deleflie during numerous occasions, and in particular during the KePASSA conferences and CNES conference on HEO orbits. D. A. recognizes the extremely helpful assistance by Hodei Urrutxua in the implementation of the non-singular geopotential code.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work is partially funded by the European Commission’s Framework Programme 7, through the Stardust Marie Curie Initial Training Network, FP7-PEOPLE-2012-ITN, Grant Agreement 317185.
This article is part of the topical collection on 50 years of Celestial Mechanics and Dynamical Astronomy.
Guest Editors: Editorial Committee.
Rights and permissions
About this article
Cite this article
Amato, D., Bombardelli, C., Baù, G. et al. Non-averaged regularized formulations as an alternative to semi-analytical orbit propagation methods. Celest Mech Dyn Astr 131, 21 (2019). https://doi.org/10.1007/s10569-019-9897-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10569-019-9897-1