Mass of the Kuiper belt

Abstract

The Kuiper belt includes tens of thousand of large bodies and millions of smaller objects. The main part of the belt objects is located in the annular zone between 39.4 and 47.8 au from the Sun; the boundaries correspond to the average distances for orbital resonances 3:2 and 2:1 with the motion of Neptune. One-dimensional, two-dimensional, and discrete rings to model the total gravitational attraction of numerous belt objects are considered. The discrete rotating model most correctly reflects the real interaction of bodies in the Solar system. The masses of the model rings were determined within EPM2017—the new version of ephemerides of planets and the Moon at IAA RAS—by fitting spacecraft ranging observations. The total mass of the Kuiper belt was calculated as the sum of the masses of the 31 largest trans-Neptunian objects directly included in the simultaneous integration and the estimated mass of the model of the discrete ring of TNO. The total mass is \((1.97 \pm 0.35)\times 10^{-2} \ m_{\oplus }\). The gravitational influence of the Kuiper belt on Jupiter, Saturn, Uranus, and Neptune exceeds at times the attraction of the hypothetical 9th planet with a mass of \(\sim 10 \ m_{\oplus }\) at the distances assumed for it. It is necessary to take into account the gravitational influence of the Kuiper belt when processing observations and only then to investigate residual discrepancies to discover a possible influence of a distant large planet.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Allen, R., Bernstein, G., Malhotra, R.: Observational limits on a distant cold Kuiper belt. Astron. J. 124, 2949–2954 (2002)

    ADS  Article  Google Scholar 

  2. Bannister, M., Kavelaars, J., Petit, J.-M.: The outer solar system origins survey. I. Design and first-quarter discoveries. Astron. J. 152(3), 70 (2016)

    ADS  Article  Google Scholar 

  3. Batygin, K., Brown, M.: Evidence for a distant giant planet in the solar system. Astron. J. 151(2), 22 (2016)

    ADS  Article  Google Scholar 

  4. Benedetti-Rossi, G., Vieira, M.R., Camargo, J.I.B., et al.: Pluto: improved astrometry from 19 years of observations. Astron. Astrophys. 570, A86 (2014)

    Article  Google Scholar 

  5. Bernstein, G.M., Trilling, D.E., Allen, R.L.: The size distribution of trans-neptunian bodies. Astron. J. 128(3), 1364–1390 (2004)

    ADS  Article  Google Scholar 

  6. Booth, M., Wyatt, M.C., Morbidelli, A., et al.: The history of the solar system’s debris disc: observable properties of the Kuiper belt. Mon. Not. R. Astron. Soc. 399, 385–398 (2009)

    ADS  Article  Google Scholar 

  7. Brozovic, M., Showalter, M.R., Robert, A., Jacobson, R.A., Buie, M.W.: The orbits and masses of satellites of Pluto. Icarus 246, 317–329 (2015)

    ADS  Article  Google Scholar 

  8. Brown, M.E., Schaller, E.L.: The mass of dwarf planet Eris. Science 3165831, 1585 (2007)

    ADS  Article  Google Scholar 

  9. Brown, M.E., Ragozzine, D., Stansberry, J., Fraser, W.C.: The size, density, and formation of the Orcus-Vanth system in the Kuiper belt. The. Astron. J. 139, 2700–2705 (2010)

    ADS  Article  Google Scholar 

  10. Brown, M.E.: The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets. Astrophys. J. Lett. 778(2), L34 (2013)

    ADS  Article  Google Scholar 

  11. Brunini, A.: Dynamics of the Edgeworth-Kuiper belt beyond 50 au. Spread of a primordial thin disk. Astron. Astrophys. 394, 1129–1134 (2002)

    ADS  Article  Google Scholar 

  12. Buie, M.W., Folkner, W.M.: Astrometry of Pluto from 1930–1951 observations: the Lampland plate collection. Astron. J. 149(1), article id. 22 (2015)

    ADS  Article  Google Scholar 

  13. Chiang, E., Brown, M.E.: KECK pencil-beam survey for faint Kuiper belt objects. Astron. J. 118, 1411–1422 (1999)

    ADS  Article  Google Scholar 

  14. Cionco, R.G., Pavlov, D.A.: The solar barycentric dynamics from a new solar-planetary ephemeris. Astron. Astrophys. 615, 11 (2018)

    ADS  Article  Google Scholar 

  15. Courde, C., Torre, J.M., Samain, E., Martinot-Lagarde, G., Aimar, M., Albanese, D., Exertier, P., Fienga, A.: Lunar laser ranging in infrared at the Grasse laser station. Astron. Astrophys. 602, A90 (2017)

    ADS  Article  Google Scholar 

  16. De Sanctis, M., Capria, M., Coradini, A.: Thermal evolution and differentiation of Edgeworth–Kuiper belt objects. Astron. J. 121(5), 2792–2799 (2001)

    ADS  Article  Google Scholar 

  17. Delsanti, A., Jewitt, D.: The solar system beyond the planets. In: Blondel, P., Mason, J. (eds.) Book “Solar System Update”, p. 267. Springer, Berlin (2006)

    Google Scholar 

  18. Elliot, J., Kern, S., Chancy, K, et al. The deep ecliptic survey: a search for Kuiper belt objects and centaurs. II. Dynamical classification, the Kuiper belt plane, and the core population. Astron. J. 129, 1117–1162 (2005)

    ADS  Article  Google Scholar 

  19. Fienga, A., Manche, H., Laskar, J., Gastineau, M.: INPOP06: a new numerical planetary ephemeris. Astron. Astrophys. 477(1), 315–327 (2008)

    ADS  Article  Google Scholar 

  20. Fienga, A., Laskar, J., Manche, H., Gastineau, M.: Constraints on the location of a possible 9th planet provided by the Cassini data. Astron. Astrophys. 587, L8 (2016)

    ADS  Article  Google Scholar 

  21. Fienga, A.: INPOP Astrometric Planetary Data (2017). http://www.geoazur.fr/astrogeo/?href= observations/base. Accessed 13 Nov 2016

  22. Folkner, W.M., James G., Williams J.G., Boggs, D.H. et al.: The planetary and lunar ephemeris DE430 and DE431. In: JPL IPN Progress Report, pp. 42–196 (2014)

  23. Folkner, W.M.: Observational data for planets and planetary satellites (2015). https://ssd.jpl.nasa.gov/?eph-data. Accessed 5 Oct 2016

  24. Folkner, W., Jacobson, R., Park, R., Williams, J.: Sensitivity of Saturn’s orbit to a hypothetical distant planet. In: AAS, DPS Meeting, vol. 48, id. 120.07 (2016)

  25. Fraser, W.C., Batygin, K., Brown, M.E., Bouchez, A.: The mass, orbit, and tidal evolution of the Quaoar–Weywot system. Icarus 222(1), 357–363 (2013)

    ADS  Article  Google Scholar 

  26. Fraser, W.C., Brown, M.E., Morbidelli, A., Parker, A., Batygin, K.: The absolute magnitude distribution of Kuiper belt objects. Astroph. J. 782(2), 100 (2014)

    ADS  Article  Google Scholar 

  27. Gladman, B., Kavelaars, J., Petit, J.-M., et al.: The structure of the Kuiper belt: size distribution and radial extent. Astron. J. 122, 1051–1066 (2001)

    ADS  Article  Google Scholar 

  28. Gladman, B.: Nomenclature in Kuiper belt. Highlights Astron. 12, 193–198 (2002)

    ADS  Article  Google Scholar 

  29. Grundy, W.M., Porter, S.B., Benecchi, S.D., Roe, H.G., Noll, K.S., Trujillo, C.A.: The mutual orbit, mass, and density of the large transneptunian binary system Varda and Ilmare. Icarus 257, 130–138 (2015)

    ADS  Article  Google Scholar 

  30. Hees, A., Folkner, W., Jacobson, R., Park, R.: Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft. Phys. Rev. D 89(10), 102002 (2014)

    ADS  Article  Google Scholar 

  31. Jewitt, D., Luu, J.C., Trujillo, C.: Large Kuiper belt objects: the Mauna Kea 8K CCD survey. Astron. J. 115, 2125–2135 (1998)

    ADS  Article  Google Scholar 

  32. Kenyon, S.: Planet formation in the outer solar system. Public. Astron. Soc. Pac. 114, 265–283 (2002)

    ADS  Article  Google Scholar 

  33. Kenyon, S.J., Luu, J.: Accretion in the early Kuiper belt. II. Fragmentation. Astron. J. 118(2), 1101–1119 (1999)

    ADS  Article  Google Scholar 

  34. Levison, H., Morbidelli, A.: The formation of the Kuiper belt by the outward transport of bodies during Neptune’s migration. Nature 426(6965), 419–421 (2003)

    ADS  Article  Google Scholar 

  35. Luu, J., Jewitt, D.: Kuiper belt objects: relics from the accretion disk of the Sun. Ann. Rev. Astron. Astrophys. 40, 63–101 (2002)

    ADS  Article  Google Scholar 

  36. Millholland, S., Laughlin, G.: Constraints on planet nine’s orbit and sky position within a framework of mean motion resonances. Astron. J. 153(3), 91 (2017)

    ADS  Article  Google Scholar 

  37. Morbidelli, A., Brown, M., Levison, H.: The Kuiper belt and its primordial sculpting. Earth Moon Planets 92(1), 1–27 (2003)

    ADS  Article  Google Scholar 

  38. Park, R.S., Konopliv, A.S., Bills, B.G., et al.: A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature (Letter) 537, 515–522 (2016). https://doi.org/10.1038/nature18955

    ADS  Article  Google Scholar 

  39. Park, R., Folkner, W.: Konopliv, et al.: Precession of Mercury’s perihelion from ranging to the MESSENGER spacecraft. Astron. J. 153, 121 (2017)

    ADS  Article  Google Scholar 

  40. Pavlov. D., Skripnichenko, V.: Rework of the ERA software system: ERA-8. In: Malkin, Z., Capitaine, N. (eds.) Proceedings of Conference Journees—2014 Systemes de rifference spatio-temporels, pp. 243–246. St. Petersburg (2015)

  41. Pavlov, D., Williams, J., Suvorkin, V.: Determining parameters of Moon’s orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models. Celest. Mech. Dyn. Astron. 126(1–3), 61–88 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  42. Petit, J.-M., Kavelaars, J.J., Gladman, B.J.: The Canada–France ecliptic plane survey-full data release: the orbital structure of the Kuiper belt. Astron. J. 142(4), 131 (2011)

    ADS  Article  Google Scholar 

  43. Pitjeva, E.: Influence of trans-neptunian objects on motion of major planets and limitation on the total TNO mass from planet and spacecraft. In: Lazzaro, D., Prialnik, D., Schulz, R., Fernandez, J.A. (eds.) Proceedings of IAU Symposium No. 263/Icy Bodies of the Solar System, pp. 93–97. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  44. Pitjeva, E.V.: Updated IAA RAS planetary ephemerides—EPM2011 and their use in scientific research. Solar Syst. Res. 47(5), 386–402 (2013)

    ADS  Article  Google Scholar 

  45. Pitjeva, E.V., Pitjev, N.P.: Development of planetary ephemerides EPM and their applications. Celest. Mech. Dyn. Astron. 119, 237–256 (2014)

    ADS  Article  Google Scholar 

  46. Pitjeva, E. V., Pitjev, N. P., Pavlov, D. A., Bodunova, M. A.: Two-dimensional Annuli of the main asteroid belt and trans-neptunian Objects and their influence on the motion of planets. Trudy Inst. Appl. Astron. Russ. Acad. Sci. 42 (in print) (2017)

  47. Pitjeva, E.V., Pavlov, D.A.: EPM2017 and EPM2017H (2017). http://iaaras.ru/en/dept/ephemeris/epm/2017/. Accessed 7 Nov 2017

  48. Ragozzine, D., Brown, M.E.: Orbits and masses of the satellites of the dwarf planet Haumea \(=\) 2003 EL61. Astron. J. 137(6), 4766–4776 (2009)

    ADS  Article  Google Scholar 

  49. Stern, S., Colwell, J.: Collisional erosion in the primordial Edgeworth–Kuiper belt and the generation of the 30–50 au Kuiper gap. Astrophys. J. 490(2), 879–882 (1997)

    ADS  Article  Google Scholar 

  50. Stansberry, J.A., Grundy, W.M., Mueller, M.: Physical properties of trans-neptunian binaries (120347) Salacia, Actaea and (42355) Typhon–Echidna. Icarus 219, 676–688 (2012)

    ADS  Article  Google Scholar 

  51. Trujillo, C.A., Brown, M.E.: The radial distribution of the Kuiper belt. Astrophys. J. 554, L95–L98 (2001a)

    ADS  Article  Google Scholar 

  52. Trujillo, C., Luu, J., Bosh, A., Elliot, J.: Large bodies in the Kuiper Belt. Astron. J. 122, 2740–2748 (2001b)

    ADS  Article  Google Scholar 

  53. Viswanthan, V., Fienga, A., Manche, H., et al.: New results for the INPOP lunar ephemerides: new modelings for the inner structure and IR LLR data. In: The 2016 International Workshop on Laser Ranging, Potsdam, Germany, October 9–14 (2016)

  54. Viswanathan, V., Fienga, A., Gastineau, M., Laskar, J.: INPOP17a Planetary Ephemerides Technical Report (2017). https://www.researchgate.net/publication/320035644_INPOP17a_planetar_ephemerides, bibitemabcd https://cddis.nasa.gov/lw20/docs/2016/papers/31-Fienga_paper.pdf. Accessed 19 Nov 2017

  55. Vitense, C., Krivov, A., Lohne, T.: The Edgeworth–Kuiper debris disk. Astron. Astrophys. 520, A32 (2010)

    ADS  Article  Google Scholar 

  56. Vondrak, J., Capitaine, N., Wallace, P.: New precession expressions, valid for long time intervals. Astron. Astrophys. 534, A22 (2011)

    ADS  Article  Google Scholar 

  57. Williams, J.G., Boggs, D.H., Folkner, W.M.: DE430 Lunar orbit, physical libration, and surface coordinates. In: Jet Propulsion Laboratory Interoffice Memorandum 335-JW, DB, WF-20130722-016, California Institute of Technology (2013)

  58. Website A. http://lnfm1.sai.msu.ru/neb/rw/natsat/double/Makemake.htm

  59. Website B. https://de.wikipedia.org/wiki/(225088)_2007_OR10

  60. Website C. https://es.wikipedia.org/wiki/(208996)_2003_AZ84

  61. Weissman, P., Levison, H.: The population of the trans-neptunian region: the Pluto-Charon environment. In: Stern, S.A., Tholen, D.J. (eds.) Pluto and Charon. University of Arizona Press, Tucson (1997)

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. Dmitry Pavlov for the software for the development of the EPM2017 ephemerides (inclusion of the Lense–Thirring acceleration into model, improved relativistic barycenter definition, modeling the acceleration of the Sun as a regular body, integration of isochronous derivatives). They would like also to thank Mariya Bodunova for calculation of the influence of rings and the 9th planet on other planets.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. V. Pitjeva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pitjeva, E.V., Pitjev, N.P. Mass of the Kuiper belt. Celest Mech Dyn Astr 130, 57 (2018). https://doi.org/10.1007/s10569-018-9853-5

Download citation

Keywords

  • Dynamical model of motion of the Solar system
  • EPM2017—ephemerides of planets and the Moon
  • Radar
  • LLR
  • Optic observations
  • Mass of the Kuiper belt
  • 9th planet