Advertisement

Mass of the Kuiper belt

  • E. V.  Pitjeva
  • N. P. Pitjev
Original Article

Abstract

The Kuiper belt includes tens of thousand of large bodies and millions of smaller objects. The main part of the belt objects is located in the annular zone between 39.4 and 47.8 au from the Sun; the boundaries correspond to the average distances for orbital resonances 3:2 and 2:1 with the motion of Neptune. One-dimensional, two-dimensional, and discrete rings to model the total gravitational attraction of numerous belt objects are considered. The discrete rotating model most correctly reflects the real interaction of bodies in the Solar system. The masses of the model rings were determined within EPM2017—the new version of ephemerides of planets and the Moon at IAA RAS—by fitting spacecraft ranging observations. The total mass of the Kuiper belt was calculated as the sum of the masses of the 31 largest trans-Neptunian objects directly included in the simultaneous integration and the estimated mass of the model of the discrete ring of TNO. The total mass is \((1.97 \pm 0.35)\times 10^{-2} \ m_{\oplus }\). The gravitational influence of the Kuiper belt on Jupiter, Saturn, Uranus, and Neptune exceeds at times the attraction of the hypothetical 9th planet with a mass of \(\sim 10 \ m_{\oplus }\) at the distances assumed for it. It is necessary to take into account the gravitational influence of the Kuiper belt when processing observations and only then to investigate residual discrepancies to discover a possible influence of a distant large planet.

Keywords

Dynamical model of motion of the Solar system EPM2017—ephemerides of planets and the Moon Radar LLR Optic observations Mass of the Kuiper belt 9th planet 

Notes

Acknowledgements

The authors are very grateful to Dr. Dmitry Pavlov for the software for the development of the EPM2017 ephemerides (inclusion of the Lense–Thirring acceleration into model, improved relativistic barycenter definition, modeling the acceleration of the Sun as a regular body, integration of isochronous derivatives). They would like also to thank Mariya Bodunova for calculation of the influence of rings and the 9th planet on other planets.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Allen, R., Bernstein, G., Malhotra, R.: Observational limits on a distant cold Kuiper belt. Astron. J. 124, 2949–2954 (2002)ADSCrossRefGoogle Scholar
  2. Bannister, M., Kavelaars, J., Petit, J.-M.: The outer solar system origins survey. I. Design and first-quarter discoveries. Astron. J. 152(3), 70 (2016)ADSCrossRefGoogle Scholar
  3. Batygin, K., Brown, M.: Evidence for a distant giant planet in the solar system. Astron. J. 151(2), 22 (2016)ADSCrossRefGoogle Scholar
  4. Benedetti-Rossi, G., Vieira, M.R., Camargo, J.I.B., et al.: Pluto: improved astrometry from 19 years of observations. Astron. Astrophys. 570, A86 (2014)CrossRefGoogle Scholar
  5. Bernstein, G.M., Trilling, D.E., Allen, R.L.: The size distribution of trans-neptunian bodies. Astron. J. 128(3), 1364–1390 (2004)ADSCrossRefGoogle Scholar
  6. Booth, M., Wyatt, M.C., Morbidelli, A., et al.: The history of the solar system’s debris disc: observable properties of the Kuiper belt. Mon. Not. R. Astron. Soc. 399, 385–398 (2009)ADSCrossRefGoogle Scholar
  7. Brozovic, M., Showalter, M.R., Robert, A., Jacobson, R.A., Buie, M.W.: The orbits and masses of satellites of Pluto. Icarus 246, 317–329 (2015)ADSCrossRefGoogle Scholar
  8. Brown, M.E., Schaller, E.L.: The mass of dwarf planet Eris. Science 3165831, 1585 (2007)ADSCrossRefGoogle Scholar
  9. Brown, M.E., Ragozzine, D., Stansberry, J., Fraser, W.C.: The size, density, and formation of the Orcus-Vanth system in the Kuiper belt. The. Astron. J. 139, 2700–2705 (2010)ADSCrossRefGoogle Scholar
  10. Brown, M.E.: The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets. Astrophys. J. Lett. 778(2), L34 (2013)ADSCrossRefGoogle Scholar
  11. Brunini, A.: Dynamics of the Edgeworth-Kuiper belt beyond 50 au. Spread of a primordial thin disk. Astron. Astrophys. 394, 1129–1134 (2002)ADSCrossRefGoogle Scholar
  12. Buie, M.W., Folkner, W.M.: Astrometry of Pluto from 1930–1951 observations: the Lampland plate collection. Astron. J. 149(1), article id. 22 (2015)ADSCrossRefGoogle Scholar
  13. Chiang, E., Brown, M.E.: KECK pencil-beam survey for faint Kuiper belt objects. Astron. J. 118, 1411–1422 (1999)ADSCrossRefGoogle Scholar
  14. Cionco, R.G., Pavlov, D.A.: The solar barycentric dynamics from a new solar-planetary ephemeris. Astron. Astrophys. 615, 11 (2018)ADSCrossRefGoogle Scholar
  15. Courde, C., Torre, J.M., Samain, E., Martinot-Lagarde, G., Aimar, M., Albanese, D., Exertier, P., Fienga, A.: Lunar laser ranging in infrared at the Grasse laser station. Astron. Astrophys. 602, A90 (2017)ADSCrossRefGoogle Scholar
  16. De Sanctis, M., Capria, M., Coradini, A.: Thermal evolution and differentiation of Edgeworth–Kuiper belt objects. Astron. J. 121(5), 2792–2799 (2001)ADSCrossRefGoogle Scholar
  17. Delsanti, A., Jewitt, D.: The solar system beyond the planets. In: Blondel, P., Mason, J. (eds.) Book “Solar System Update”, p. 267. Springer, Berlin (2006)CrossRefGoogle Scholar
  18. Elliot, J., Kern, S., Chancy, K, et al. The deep ecliptic survey: a search for Kuiper belt objects and centaurs. II. Dynamical classification, the Kuiper belt plane, and the core population. Astron. J. 129, 1117–1162 (2005)ADSCrossRefGoogle Scholar
  19. Fienga, A., Manche, H., Laskar, J., Gastineau, M.: INPOP06: a new numerical planetary ephemeris. Astron. Astrophys. 477(1), 315–327 (2008)ADSCrossRefGoogle Scholar
  20. Fienga, A., Laskar, J., Manche, H., Gastineau, M.: Constraints on the location of a possible 9th planet provided by the Cassini data. Astron. Astrophys. 587, L8 (2016)ADSCrossRefGoogle Scholar
  21. Fienga, A.: INPOP Astrometric Planetary Data (2017). http://www.geoazur.fr/astrogeo/?href= observations/base. Accessed 13 Nov 2016
  22. Folkner, W.M., James G., Williams J.G., Boggs, D.H. et al.: The planetary and lunar ephemeris DE430 and DE431. In: JPL IPN Progress Report, pp. 42–196 (2014)Google Scholar
  23. Folkner, W.M.: Observational data for planets and planetary satellites (2015). https://ssd.jpl.nasa.gov/?eph-data. Accessed 5 Oct 2016
  24. Folkner, W., Jacobson, R., Park, R., Williams, J.: Sensitivity of Saturn’s orbit to a hypothetical distant planet. In: AAS, DPS Meeting, vol. 48, id. 120.07 (2016)Google Scholar
  25. Fraser, W.C., Batygin, K., Brown, M.E., Bouchez, A.: The mass, orbit, and tidal evolution of the Quaoar–Weywot system. Icarus 222(1), 357–363 (2013)ADSCrossRefGoogle Scholar
  26. Fraser, W.C., Brown, M.E., Morbidelli, A., Parker, A., Batygin, K.: The absolute magnitude distribution of Kuiper belt objects. Astroph. J. 782(2), 100 (2014)ADSCrossRefGoogle Scholar
  27. Gladman, B., Kavelaars, J., Petit, J.-M., et al.: The structure of the Kuiper belt: size distribution and radial extent. Astron. J. 122, 1051–1066 (2001)ADSCrossRefGoogle Scholar
  28. Gladman, B.: Nomenclature in Kuiper belt. Highlights Astron. 12, 193–198 (2002)ADSCrossRefGoogle Scholar
  29. Grundy, W.M., Porter, S.B., Benecchi, S.D., Roe, H.G., Noll, K.S., Trujillo, C.A.: The mutual orbit, mass, and density of the large transneptunian binary system Varda and Ilmare. Icarus 257, 130–138 (2015)ADSCrossRefGoogle Scholar
  30. Hees, A., Folkner, W., Jacobson, R., Park, R.: Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft. Phys. Rev. D 89(10), 102002 (2014)ADSCrossRefGoogle Scholar
  31. Jewitt, D., Luu, J.C., Trujillo, C.: Large Kuiper belt objects: the Mauna Kea 8K CCD survey. Astron. J. 115, 2125–2135 (1998)ADSCrossRefGoogle Scholar
  32. Kenyon, S.: Planet formation in the outer solar system. Public. Astron. Soc. Pac. 114, 265–283 (2002)ADSCrossRefGoogle Scholar
  33. Kenyon, S.J., Luu, J.: Accretion in the early Kuiper belt. II. Fragmentation. Astron. J. 118(2), 1101–1119 (1999)ADSCrossRefGoogle Scholar
  34. Levison, H., Morbidelli, A.: The formation of the Kuiper belt by the outward transport of bodies during Neptune’s migration. Nature 426(6965), 419–421 (2003)ADSCrossRefGoogle Scholar
  35. Luu, J., Jewitt, D.: Kuiper belt objects: relics from the accretion disk of the Sun. Ann. Rev. Astron. Astrophys. 40, 63–101 (2002)ADSCrossRefGoogle Scholar
  36. Millholland, S., Laughlin, G.: Constraints on planet nine’s orbit and sky position within a framework of mean motion resonances. Astron. J. 153(3), 91 (2017)ADSCrossRefGoogle Scholar
  37. Morbidelli, A., Brown, M., Levison, H.: The Kuiper belt and its primordial sculpting. Earth Moon Planets 92(1), 1–27 (2003)ADSCrossRefGoogle Scholar
  38. Park, R.S., Konopliv, A.S., Bills, B.G., et al.: A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature (Letter) 537, 515–522 (2016).  https://doi.org/10.1038/nature18955 ADSCrossRefGoogle Scholar
  39. Park, R., Folkner, W.: Konopliv, et al.: Precession of Mercury’s perihelion from ranging to the MESSENGER spacecraft. Astron. J. 153, 121 (2017)ADSCrossRefGoogle Scholar
  40. Pavlov. D., Skripnichenko, V.: Rework of the ERA software system: ERA-8. In: Malkin, Z., Capitaine, N. (eds.) Proceedings of Conference Journees—2014 Systemes de rifference spatio-temporels, pp. 243–246. St. Petersburg (2015)Google Scholar
  41. Pavlov, D., Williams, J., Suvorkin, V.: Determining parameters of Moon’s orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models. Celest. Mech. Dyn. Astron. 126(1–3), 61–88 (2016)ADSMathSciNetCrossRefGoogle Scholar
  42. Petit, J.-M., Kavelaars, J.J., Gladman, B.J.: The Canada–France ecliptic plane survey-full data release: the orbital structure of the Kuiper belt. Astron. J. 142(4), 131 (2011)ADSCrossRefGoogle Scholar
  43. Pitjeva, E.: Influence of trans-neptunian objects on motion of major planets and limitation on the total TNO mass from planet and spacecraft. In: Lazzaro, D., Prialnik, D., Schulz, R., Fernandez, J.A. (eds.) Proceedings of IAU Symposium No. 263/Icy Bodies of the Solar System, pp. 93–97. Cambridge University Press, Cambridge (2010)Google Scholar
  44. Pitjeva, E.V.: Updated IAA RAS planetary ephemerides—EPM2011 and their use in scientific research. Solar Syst. Res. 47(5), 386–402 (2013)ADSCrossRefGoogle Scholar
  45. Pitjeva, E.V., Pitjev, N.P.: Development of planetary ephemerides EPM and their applications. Celest. Mech. Dyn. Astron. 119, 237–256 (2014)ADSCrossRefGoogle Scholar
  46. Pitjeva, E. V., Pitjev, N. P., Pavlov, D. A., Bodunova, M. A.: Two-dimensional Annuli of the main asteroid belt and trans-neptunian Objects and their influence on the motion of planets. Trudy Inst. Appl. Astron. Russ. Acad. Sci. 42 (in print) (2017)Google Scholar
  47. Pitjeva, E.V., Pavlov, D.A.: EPM2017 and EPM2017H (2017). http://iaaras.ru/en/dept/ephemeris/epm/2017/. Accessed 7 Nov 2017
  48. Ragozzine, D., Brown, M.E.: Orbits and masses of the satellites of the dwarf planet Haumea \(=\) 2003 EL61. Astron. J. 137(6), 4766–4776 (2009)ADSCrossRefGoogle Scholar
  49. Stern, S., Colwell, J.: Collisional erosion in the primordial Edgeworth–Kuiper belt and the generation of the 30–50 au Kuiper gap. Astrophys. J. 490(2), 879–882 (1997)ADSCrossRefGoogle Scholar
  50. Stansberry, J.A., Grundy, W.M., Mueller, M.: Physical properties of trans-neptunian binaries (120347) Salacia, Actaea and (42355) Typhon–Echidna. Icarus 219, 676–688 (2012)ADSCrossRefGoogle Scholar
  51. Trujillo, C.A., Brown, M.E.: The radial distribution of the Kuiper belt. Astrophys. J. 554, L95–L98 (2001a)ADSCrossRefGoogle Scholar
  52. Trujillo, C., Luu, J., Bosh, A., Elliot, J.: Large bodies in the Kuiper Belt. Astron. J. 122, 2740–2748 (2001b)ADSCrossRefGoogle Scholar
  53. Viswanthan, V., Fienga, A., Manche, H., et al.: New results for the INPOP lunar ephemerides: new modelings for the inner structure and IR LLR data. In: The 2016 International Workshop on Laser Ranging, Potsdam, Germany, October 9–14 (2016)Google Scholar
  54. Viswanathan, V., Fienga, A., Gastineau, M., Laskar, J.: INPOP17a Planetary Ephemerides Technical Report (2017). https://www.researchgate.net/publication/320035644_INPOP17a_planetar_ephemerides, bibitemabcd https://cddis.nasa.gov/lw20/docs/2016/papers/31-Fienga_paper.pdf. Accessed 19 Nov 2017
  55. Vitense, C., Krivov, A., Lohne, T.: The Edgeworth–Kuiper debris disk. Astron. Astrophys. 520, A32 (2010)ADSCrossRefGoogle Scholar
  56. Vondrak, J., Capitaine, N., Wallace, P.: New precession expressions, valid for long time intervals. Astron. Astrophys. 534, A22 (2011)ADSCrossRefGoogle Scholar
  57. Williams, J.G., Boggs, D.H., Folkner, W.M.: DE430 Lunar orbit, physical libration, and surface coordinates. In: Jet Propulsion Laboratory Interoffice Memorandum 335-JW, DB, WF-20130722-016, California Institute of Technology (2013)Google Scholar
  58. Weissman, P., Levison, H.: The population of the trans-neptunian region: the Pluto-Charon environment. In: Stern, S.A., Tholen, D.J. (eds.) Pluto and Charon. University of Arizona Press, Tucson (1997)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Applied Astronomy of Russian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State UniversityPetrodvoretzRussia

Personalised recommendations