Skip to main content

Advertisement

Log in

Abstract

The Kuiper belt includes tens of thousand of large bodies and millions of smaller objects. The main part of the belt objects is located in the annular zone between 39.4 and 47.8 au from the Sun; the boundaries correspond to the average distances for orbital resonances 3:2 and 2:1 with the motion of Neptune. One-dimensional, two-dimensional, and discrete rings to model the total gravitational attraction of numerous belt objects are considered. The discrete rotating model most correctly reflects the real interaction of bodies in the Solar system. The masses of the model rings were determined within EPM2017—the new version of ephemerides of planets and the Moon at IAA RAS—by fitting spacecraft ranging observations. The total mass of the Kuiper belt was calculated as the sum of the masses of the 31 largest trans-Neptunian objects directly included in the simultaneous integration and the estimated mass of the model of the discrete ring of TNO. The total mass is \((1.97 \pm 0.35)\times 10^{-2} \ m_{\oplus }\). The gravitational influence of the Kuiper belt on Jupiter, Saturn, Uranus, and Neptune exceeds at times the attraction of the hypothetical 9th planet with a mass of \(\sim 10 \ m_{\oplus }\) at the distances assumed for it. It is necessary to take into account the gravitational influence of the Kuiper belt when processing observations and only then to investigate residual discrepancies to discover a possible influence of a distant large planet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen, R., Bernstein, G., Malhotra, R.: Observational limits on a distant cold Kuiper belt. Astron. J. 124, 2949–2954 (2002)

    Article  ADS  Google Scholar 

  • Bannister, M., Kavelaars, J., Petit, J.-M.: The outer solar system origins survey. I. Design and first-quarter discoveries. Astron. J. 152(3), 70 (2016)

    Article  ADS  Google Scholar 

  • Batygin, K., Brown, M.: Evidence for a distant giant planet in the solar system. Astron. J. 151(2), 22 (2016)

    Article  ADS  Google Scholar 

  • Benedetti-Rossi, G., Vieira, M.R., Camargo, J.I.B., et al.: Pluto: improved astrometry from 19 years of observations. Astron. Astrophys. 570, A86 (2014)

    Article  Google Scholar 

  • Bernstein, G.M., Trilling, D.E., Allen, R.L.: The size distribution of trans-neptunian bodies. Astron. J. 128(3), 1364–1390 (2004)

    Article  ADS  Google Scholar 

  • Booth, M., Wyatt, M.C., Morbidelli, A., et al.: The history of the solar system’s debris disc: observable properties of the Kuiper belt. Mon. Not. R. Astron. Soc. 399, 385–398 (2009)

    Article  ADS  Google Scholar 

  • Brozovic, M., Showalter, M.R., Robert, A., Jacobson, R.A., Buie, M.W.: The orbits and masses of satellites of Pluto. Icarus 246, 317–329 (2015)

    Article  ADS  Google Scholar 

  • Brown, M.E., Schaller, E.L.: The mass of dwarf planet Eris. Science 3165831, 1585 (2007)

    Article  ADS  Google Scholar 

  • Brown, M.E., Ragozzine, D., Stansberry, J., Fraser, W.C.: The size, density, and formation of the Orcus-Vanth system in the Kuiper belt. The. Astron. J. 139, 2700–2705 (2010)

    Article  ADS  Google Scholar 

  • Brown, M.E.: The density of mid-sized Kuiper belt object 2002 UX25 and the formation of the dwarf planets. Astrophys. J. Lett. 778(2), L34 (2013)

    Article  ADS  Google Scholar 

  • Brunini, A.: Dynamics of the Edgeworth-Kuiper belt beyond 50 au. Spread of a primordial thin disk. Astron. Astrophys. 394, 1129–1134 (2002)

    Article  ADS  Google Scholar 

  • Buie, M.W., Folkner, W.M.: Astrometry of Pluto from 1930–1951 observations: the Lampland plate collection. Astron. J. 149(1), article id. 22 (2015)

    Article  ADS  Google Scholar 

  • Chiang, E., Brown, M.E.: KECK pencil-beam survey for faint Kuiper belt objects. Astron. J. 118, 1411–1422 (1999)

    Article  ADS  Google Scholar 

  • Cionco, R.G., Pavlov, D.A.: The solar barycentric dynamics from a new solar-planetary ephemeris. Astron. Astrophys. 615, 11 (2018)

    Article  ADS  Google Scholar 

  • Courde, C., Torre, J.M., Samain, E., Martinot-Lagarde, G., Aimar, M., Albanese, D., Exertier, P., Fienga, A.: Lunar laser ranging in infrared at the Grasse laser station. Astron. Astrophys. 602, A90 (2017)

    Article  ADS  Google Scholar 

  • De Sanctis, M., Capria, M., Coradini, A.: Thermal evolution and differentiation of Edgeworth–Kuiper belt objects. Astron. J. 121(5), 2792–2799 (2001)

    Article  ADS  Google Scholar 

  • Delsanti, A., Jewitt, D.: The solar system beyond the planets. In: Blondel, P., Mason, J. (eds.) Book “Solar System Update”, p. 267. Springer, Berlin (2006)

    Chapter  Google Scholar 

  • Elliot, J., Kern, S., Chancy, K, et al. The deep ecliptic survey: a search for Kuiper belt objects and centaurs. II. Dynamical classification, the Kuiper belt plane, and the core population. Astron. J. 129, 1117–1162 (2005)

    Article  ADS  Google Scholar 

  • Fienga, A., Manche, H., Laskar, J., Gastineau, M.: INPOP06: a new numerical planetary ephemeris. Astron. Astrophys. 477(1), 315–327 (2008)

    Article  ADS  Google Scholar 

  • Fienga, A., Laskar, J., Manche, H., Gastineau, M.: Constraints on the location of a possible 9th planet provided by the Cassini data. Astron. Astrophys. 587, L8 (2016)

    Article  ADS  Google Scholar 

  • Fienga, A.: INPOP Astrometric Planetary Data (2017). http://www.geoazur.fr/astrogeo/?href= observations/base. Accessed 13 Nov 2016

  • Folkner, W.M., James G., Williams J.G., Boggs, D.H. et al.: The planetary and lunar ephemeris DE430 and DE431. In: JPL IPN Progress Report, pp. 42–196 (2014)

  • Folkner, W.M.: Observational data for planets and planetary satellites (2015). https://ssd.jpl.nasa.gov/?eph-data. Accessed 5 Oct 2016

  • Folkner, W., Jacobson, R., Park, R., Williams, J.: Sensitivity of Saturn’s orbit to a hypothetical distant planet. In: AAS, DPS Meeting, vol. 48, id. 120.07 (2016)

  • Fraser, W.C., Batygin, K., Brown, M.E., Bouchez, A.: The mass, orbit, and tidal evolution of the Quaoar–Weywot system. Icarus 222(1), 357–363 (2013)

    Article  ADS  Google Scholar 

  • Fraser, W.C., Brown, M.E., Morbidelli, A., Parker, A., Batygin, K.: The absolute magnitude distribution of Kuiper belt objects. Astroph. J. 782(2), 100 (2014)

    Article  ADS  Google Scholar 

  • Gladman, B., Kavelaars, J., Petit, J.-M., et al.: The structure of the Kuiper belt: size distribution and radial extent. Astron. J. 122, 1051–1066 (2001)

    Article  ADS  Google Scholar 

  • Gladman, B.: Nomenclature in Kuiper belt. Highlights Astron. 12, 193–198 (2002)

    Article  ADS  Google Scholar 

  • Grundy, W.M., Porter, S.B., Benecchi, S.D., Roe, H.G., Noll, K.S., Trujillo, C.A.: The mutual orbit, mass, and density of the large transneptunian binary system Varda and Ilmare. Icarus 257, 130–138 (2015)

    Article  ADS  Google Scholar 

  • Hees, A., Folkner, W., Jacobson, R., Park, R.: Constraints on modified Newtonian dynamics theories from radio tracking data of the Cassini spacecraft. Phys. Rev. D 89(10), 102002 (2014)

    Article  ADS  Google Scholar 

  • Jewitt, D., Luu, J.C., Trujillo, C.: Large Kuiper belt objects: the Mauna Kea 8K CCD survey. Astron. J. 115, 2125–2135 (1998)

    Article  ADS  Google Scholar 

  • Kenyon, S.: Planet formation in the outer solar system. Public. Astron. Soc. Pac. 114, 265–283 (2002)

    Article  ADS  Google Scholar 

  • Kenyon, S.J., Luu, J.: Accretion in the early Kuiper belt. II. Fragmentation. Astron. J. 118(2), 1101–1119 (1999)

    Article  ADS  Google Scholar 

  • Levison, H., Morbidelli, A.: The formation of the Kuiper belt by the outward transport of bodies during Neptune’s migration. Nature 426(6965), 419–421 (2003)

    Article  ADS  Google Scholar 

  • Luu, J., Jewitt, D.: Kuiper belt objects: relics from the accretion disk of the Sun. Ann. Rev. Astron. Astrophys. 40, 63–101 (2002)

    Article  ADS  Google Scholar 

  • Millholland, S., Laughlin, G.: Constraints on planet nine’s orbit and sky position within a framework of mean motion resonances. Astron. J. 153(3), 91 (2017)

    Article  ADS  Google Scholar 

  • Morbidelli, A., Brown, M., Levison, H.: The Kuiper belt and its primordial sculpting. Earth Moon Planets 92(1), 1–27 (2003)

    Article  ADS  Google Scholar 

  • Park, R.S., Konopliv, A.S., Bills, B.G., et al.: A partially differentiated interior for (1) Ceres deduced from its gravity field and shape. Nature (Letter) 537, 515–522 (2016). https://doi.org/10.1038/nature18955

    Article  ADS  Google Scholar 

  • Park, R., Folkner, W.: Konopliv, et al.: Precession of Mercury’s perihelion from ranging to the MESSENGER spacecraft. Astron. J. 153, 121 (2017)

    Article  ADS  Google Scholar 

  • Pavlov. D., Skripnichenko, V.: Rework of the ERA software system: ERA-8. In: Malkin, Z., Capitaine, N. (eds.) Proceedings of Conference Journees—2014 Systemes de rifference spatio-temporels, pp. 243–246. St. Petersburg (2015)

  • Pavlov, D., Williams, J., Suvorkin, V.: Determining parameters of Moon’s orbital and rotational motion from LLR observations using GRAIL and IERS-recommended models. Celest. Mech. Dyn. Astron. 126(1–3), 61–88 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Petit, J.-M., Kavelaars, J.J., Gladman, B.J.: The Canada–France ecliptic plane survey-full data release: the orbital structure of the Kuiper belt. Astron. J. 142(4), 131 (2011)

    Article  ADS  Google Scholar 

  • Pitjeva, E.: Influence of trans-neptunian objects on motion of major planets and limitation on the total TNO mass from planet and spacecraft. In: Lazzaro, D., Prialnik, D., Schulz, R., Fernandez, J.A. (eds.) Proceedings of IAU Symposium No. 263/Icy Bodies of the Solar System, pp. 93–97. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  • Pitjeva, E.V.: Updated IAA RAS planetary ephemerides—EPM2011 and their use in scientific research. Solar Syst. Res. 47(5), 386–402 (2013)

    Article  ADS  Google Scholar 

  • Pitjeva, E.V., Pitjev, N.P.: Development of planetary ephemerides EPM and their applications. Celest. Mech. Dyn. Astron. 119, 237–256 (2014)

    Article  ADS  Google Scholar 

  • Pitjeva, E. V., Pitjev, N. P., Pavlov, D. A., Bodunova, M. A.: Two-dimensional Annuli of the main asteroid belt and trans-neptunian Objects and their influence on the motion of planets. Trudy Inst. Appl. Astron. Russ. Acad. Sci. 42 (in print) (2017)

  • Pitjeva, E.V., Pavlov, D.A.: EPM2017 and EPM2017H (2017). http://iaaras.ru/en/dept/ephemeris/epm/2017/. Accessed 7 Nov 2017

  • Ragozzine, D., Brown, M.E.: Orbits and masses of the satellites of the dwarf planet Haumea \(=\) 2003 EL61. Astron. J. 137(6), 4766–4776 (2009)

    Article  ADS  Google Scholar 

  • Stern, S., Colwell, J.: Collisional erosion in the primordial Edgeworth–Kuiper belt and the generation of the 30–50 au Kuiper gap. Astrophys. J. 490(2), 879–882 (1997)

    Article  ADS  Google Scholar 

  • Stansberry, J.A., Grundy, W.M., Mueller, M.: Physical properties of trans-neptunian binaries (120347) Salacia, Actaea and (42355) Typhon–Echidna. Icarus 219, 676–688 (2012)

    Article  ADS  Google Scholar 

  • Trujillo, C.A., Brown, M.E.: The radial distribution of the Kuiper belt. Astrophys. J. 554, L95–L98 (2001a)

    Article  ADS  Google Scholar 

  • Trujillo, C., Luu, J., Bosh, A., Elliot, J.: Large bodies in the Kuiper Belt. Astron. J. 122, 2740–2748 (2001b)

    Article  ADS  Google Scholar 

  • Viswanthan, V., Fienga, A., Manche, H., et al.: New results for the INPOP lunar ephemerides: new modelings for the inner structure and IR LLR data. In: The 2016 International Workshop on Laser Ranging, Potsdam, Germany, October 9–14 (2016)

  • Viswanathan, V., Fienga, A., Gastineau, M., Laskar, J.: INPOP17a Planetary Ephemerides Technical Report (2017). https://www.researchgate.net/publication/320035644_INPOP17a_planetar_ephemerides, bibitemabcd https://cddis.nasa.gov/lw20/docs/2016/papers/31-Fienga_paper.pdf. Accessed 19 Nov 2017

  • Vitense, C., Krivov, A., Lohne, T.: The Edgeworth–Kuiper debris disk. Astron. Astrophys. 520, A32 (2010)

    Article  ADS  Google Scholar 

  • Vondrak, J., Capitaine, N., Wallace, P.: New precession expressions, valid for long time intervals. Astron. Astrophys. 534, A22 (2011)

    Article  ADS  Google Scholar 

  • Williams, J.G., Boggs, D.H., Folkner, W.M.: DE430 Lunar orbit, physical libration, and surface coordinates. In: Jet Propulsion Laboratory Interoffice Memorandum 335-JW, DB, WF-20130722-016, California Institute of Technology (2013)

  • Website A. http://lnfm1.sai.msu.ru/neb/rw/natsat/double/Makemake.htm

  • Website B. https://de.wikipedia.org/wiki/(225088)_2007_OR10

  • Website C. https://es.wikipedia.org/wiki/(208996)_2003_AZ84

  • Weissman, P., Levison, H.: The population of the trans-neptunian region: the Pluto-Charon environment. In: Stern, S.A., Tholen, D.J. (eds.) Pluto and Charon. University of Arizona Press, Tucson (1997)

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. Dmitry Pavlov for the software for the development of the EPM2017 ephemerides (inclusion of the Lense–Thirring acceleration into model, improved relativistic barycenter definition, modeling the acceleration of the Sun as a regular body, integration of isochronous derivatives). They would like also to thank Mariya Bodunova for calculation of the influence of rings and the 9th planet on other planets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Pitjeva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitjeva, E.V., Pitjev, N.P. Mass of the Kuiper belt. Celest Mech Dyn Astr 130, 57 (2018). https://doi.org/10.1007/s10569-018-9853-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10569-018-9853-5

Keywords

Navigation