Free time minimizers for the three-body problem

  • Richard Moeckel
  • Richard Montgomery
  • Héctor Sánchez Morgado
Original Article


Free time minimizers of the action (called “semi-static” solutions by Mañe in International congress on dynamical systems in Montevideo (a tribute to Ricardo Mañé), vol 362, pp 120–131, 1996) play a central role in the theory of weak KAM solutions to the Hamilton–Jacobi equation (Fathi in Weak KAM Theorem in Lagrangian Dynamics Preliminary Version Number 10, 2017). We prove that any solution to Newton’s three-body problem which is asymptotic to Lagrange’s parabolic homothetic solution is eventually a free time minimizer. Conversely, we prove that every free time minimizer tends to Lagrange’s solution, provided the mass ratios lie in a certain large open set of mass ratios. We were inspired by the work of Da Luz and Maderna (Math Proc Camb Philos Soc 156:209–227, 1980) which showed that every free time minimizer for the N-body problem is parabolic and therefore must be asymptotic to the set of central configurations. We exclude being asymptotic to Euler’s central configurations by a second variation argument. Central configurations correspond to rest points for the McGehee blown-up dynamics. The large open set of mass ratios are those for which the linearized dynamics at each Euler rest point has a complex eigenvalue.


Celestial Mechanics Three-body problem Free time minimizer Central configuration 

Mathematics Subject Classification

70F10 70F15 37N05 70G40 70G60 



Montgomery thankfully acknowledges support by NSF Grant DMS-20030177. Sanchez and Montgomery thankfully acknowledge support of UC-MEXUS Grant CN-16-78. Moeckel acknowledges NSF Grant DMS-1712656


  1. Barutello, V., Secchi, S.: Morse index properties of colliding solutions to the N-body problem. Ann. I. H. Poincare AN 25, 539–565 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. Barutello, V., Hu, Xijun, Portaluri, A., Terracini, S.: An index theory for asymptotic motions under singular potentials (2017). arXiv:1705.01291
  3. Chazy, J.: Sur certaines trajectoires du probleme des n corps. Bull. Astron. 35, 321–389 (1918)Google Scholar
  4. Chazy, J.: Sur l’allure du mouvement du probléme des trois corps quand le temps croît indéfinement. Ann. Sci. l’E.N.S., 3 série, tome 39, 22–130 (1922)Google Scholar
  5. Chenciner, A.: Action minimizing solutions of the Newtonian n-body problem : from homology to symmetry. In: Proceedings of the International Congress of Mathematics, vol. III (Beijing, 2002). Higner Ed. Press, pp. 279–294 (2002)Google Scholar
  6. Chenciner, A.: Collisions totales, mouvements complètement paraboliques et réduction des homothéties dans le problème des \(n\) corps, preprint 2003Google Scholar
  7. Da Luz, A., Maderna, E.: On free time minimizers for the newtonian \(N\)-body problem. Math. Proc. Camb. Philos. Soc. 156, 209–227 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. Devaney, R.: Structural stability of homothetic solutions of the collinear n-body. Celest. Mech. 19, 391–404 (1979)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. Devaney, R.: Triple collision in the planar isosceles three-body problem. Invent. Math. 60, 249–267 (1980)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. Euler, L.: De motu rectilineo trium corporum se mutuo attrahentium. Novi Comm. Acad. Sci. Imp. Petrop. 11, 144–151 (1767)Google Scholar
  11. Fathi, A.: Théorème KAM faible et théorie de Mather sur les systèmes lagrangiens. C. R. Acad. Sci. Paris Sér. I Math. 324(9), 1043–1046 (1997)Google Scholar
  12. Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics Preliminary Version Number 10, available from Fathi’s website (2017)Google Scholar
  13. Hartman, P.: Ordinary Differential Equations. SIAM, Philadelphia (2002)CrossRefzbMATHGoogle Scholar
  14. Hirsch, M., Pugh, C., Shub, M.: Invariant manifolds. Springer Lecture Notes in Mathematics, vol. 583 (1977)Google Scholar
  15. Lagrange, J. L.: Essai sur le problème des trois corps, Œuvres, vol. 6 (1772)Google Scholar
  16. Maderna, E.: On weak KAM theory for \(N\)-body problems. Ergod. Theory Dyn. Syst. 32(2), 1019–1041 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. Maderna, E.: Translation invariance of weak KAM solutions for the \(N\)-body problem. Proc. Am. Math. Soc. 41, 2809–2816 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. Maderna, E., Venturelli, A.: Globally minimizing parabolic motions in the Newtonian N-body problem. Arch. Ration. Mech. 194, 283–313 (2009). arxiv: 1502.06278
  19. Mañé, R.: Lagrangian flows: the dynamics of globally minimizing orbits. In: Ledrappier, F., Lewowicz, J., Newhouse, S. (eds.) International Congress on Dynamical Systems in Montevideo (a tribute to Ricardo Mañé). Pitman Research Notes in Math., vol. 362, pp. 120–131 (1996). Reprinted in Bol. Soc. Bras. Mat. Vol 28, N. 2, (1997) 141–153Google Scholar
  20. Marchal, C.: How the minimization of action avoids singularities. Celest. Mech. Dyn. Astron. 83, 325–354 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. Marchal, C., Saari, D.: On the final evolution of the \(n\)-body problem. JDE 20, 150–186 (1976)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. McGehee, R.: Triple collision in the collinear three-body problem. Invent. Math. 27, 191–227 (1974)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. McGehee, R.: Singularities in classical celestial mechanics. In: Proceedings of the International Congress of Mathematicians, Helsinki, pp. 827–834 (1978)Google Scholar
  24. Moeckel, R.: Orbits of the three-body problem which pass infinitely close to triple collision. Am. J. Math. 103(6), 1323–1341 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  25. Moeckel, R.: Orbits near triple collision in the three-body problem. Indiana Univ. Math. J. 32(2), 221–239 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  26. Moeckel, R.: Chaotic orbits in the three-body problem. In: Rabinowitz, P.H. (ed.) Periodic Solutions of Hamiltonian Systems and Related Topics. D. Reidel, Dordrecht (1987)Google Scholar
  27. Moeckel, R.: Chaotic dynamics near triple collision. Arch. Ration. Mech. 107(1), 37–69 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  28. Moeckel, R., Montgomery, R., Venturelli, A.: From brake to syzygy. Arch. Ration. Mech. Anal. 204(3), 1009–1060 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. Percino, B., Sánchez Morgado, H.: Busemann functions for the N-body problem. Arch. Ration. Mech. 213(3), 981–991 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  30. Robinson, C., Saari, D.: N-body spatial parabolic orbits asymptotic to collinear central configurations. JDE 48, 434–459 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. Siegel, C.L.: Der dreierstoss. Ann. Math. 42, 127–168 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  32. Siegel, C.L., Moser, J.: Lectures on Celestial Mechanics. Springer, New York (1971)CrossRefzbMATHGoogle Scholar
  33. Simo, C.: Analysis of triple collision in the isosceles problem. In: Classical Mechanics and Dynamical Systems. Marcel Dekker, New York (1980)Google Scholar
  34. Yu, G., Hu, X.: Index theory for zero energy solutions of the planar anisotropic Kepler problem (2017). arXiv:1705.05645

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Richard Moeckel
    • 1
  • Richard Montgomery
    • 2
  • Héctor Sánchez Morgado
    • 3
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of MathematicsUniversity of CaliforniaSanta CruzUSA
  3. 3.Instituto de MatemáticasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico

Personalised recommendations