Advertisement

Inclined asymmetric librations in exterior resonances

  • G. Voyatzis
  • K. Tsiganis
  • K. I. Antoniadou
Original Article

Abstract

Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or \(\pi \), the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273–281,  https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun–Neptune–TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

Keywords

Circular restricted TBP Exterior resonances Spatial asymmetric periodic orbits Trans-Neptunian object dynamics 

Notes

Acknowledgements

The work of KIA was supported by the Fonds de la Recherche Scientifique-FNRS under Grant No. T.0029.13 (“ExtraOrDynHa” research project) and the University of Namur.

Compliance with ethical standards

Conflict of interest

The authors G. Voyatzis and K. Tsiganis declare that they have no conflict of interest.

References

  1. Antoniadou, K.I., Voyatzis, G.: 2/1 resonant periodic orbits in three dimensional planetary systems. Celest. Mech. Dyn. Astron. 115, 161–184 (2013)ADSMathSciNetCrossRefGoogle Scholar
  2. Antoniadou, K.I., Voyatzis, G.: Resonant periodic orbits in the exoplanetary systems. Astrophys. Space Sci. 349, 657–676 (2014)ADSCrossRefGoogle Scholar
  3. Antoniadou, K.I., Voyatzis, G., Kotoulas, T.: On the bifurcation and continuation of periodic orbits in the three body problem. Int. J. Bifurc Chaos 21, 2211 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. Beaugé, C.: Asymmetric librations in exterior resonances. Celest. Mech. Dyn. Astron. 60, 225–248 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. Beaugé, C., Ferraz-Mello, S.: Capture in exterior mean-motion resonances due to Poynting-Robertson drag. Icarus 110, 239–260 (1994).  https://doi.org/10.1006/icar.1994.1119 ADSCrossRefGoogle Scholar
  6. Berry, M.V.: Regular and irregular motion. In: Jorna, S. (ed.) Topics in Nonlinear. Dynamics: A Tribute to Sir Edward Bullard, pp. 16–120. American Institute of Physics (1978)Google Scholar
  7. Broucke, R.: Stability of periodic orbits in the elliptic, restricted three-body problem. AIAA J. 7, 1003–1009 (1969)ADSCrossRefzbMATHGoogle Scholar
  8. Bruno, A.D.: The Restricted 3-Body Problem: Plane Periodic Orbits. Walter de Gruyter, Berlin (1994)CrossRefGoogle Scholar
  9. Chambers, J.E.: A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999)ADSCrossRefGoogle Scholar
  10. Giuppone, C.A., Beaugé, C., Michtchenko, T.A., Ferraz-Mello, S.: Dynamics of two planets in co-orbital motion. Mon. Not. R. Astron. Soc. 407, 390–398 (2010).  https://doi.org/10.1111/j.1365-2966.2010.16904.x ADSCrossRefGoogle Scholar
  11. Hadjidemetriou, J.D.: Resonant motion in the restricted three body problem. Celest. Mech. Dyn. Astron. 56, 201–219 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. Hadjidemetriou, J.D., Voyatzis, G.: Different types of attractors in the three body problem perturbed by dissipative terms. Int. J. Bifurc. Chaos 21, 2195–2209 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. Hénon, M.: Vertical stability of periodic orbits in the restricted problem. I. Equal masses. Astron. Astrophys. 28, 415 (1973)ADSzbMATHGoogle Scholar
  14. Hénon, M.: Generating Families in the Restricted Three-Body Problem. Springer, Berlin (1997)zbMATHGoogle Scholar
  15. Ichtiaroglou, S., Katopodis, K., Michalodimitrakis, M.: Periodic orbits in the three-dimensional planetary systems. J. Asttrophys. Astron. 10, 367–380 (1989)ADSCrossRefzbMATHGoogle Scholar
  16. Jewitt, D.: Kuiper belt objects. Annu. Rev. Earth Planet. Sci. 27, 287–312 (1999).  https://doi.org/10.1146/annurev.earth.27.1.287 ADSCrossRefGoogle Scholar
  17. Kotoulas, T.A., Voyatzis, G.: Three dimensional periodic orbits in exterior mean motion resonances with Neptune. Astron. Astrophys. 441, 807–814 (2005)ADSCrossRefzbMATHGoogle Scholar
  18. Lykawka, P.S., Mukai, T.: Dynamical classification of trans-Neptunian objects: probing their origin, evolution, and interrelation. Icarus 189, 213–232 (2007).  https://doi.org/10.1016/j.icarus.2007.01.001 ADSCrossRefGoogle Scholar
  19. Markellos, V.V.: Bifurcations of plane with three-dimensional asymmetric periodic orbits in the restricted three-body problem. Mon. Not. R. Astron. Soc. 180, 103–116 (1977).  https://doi.org/10.1093/mnras/180.2.103 ADSCrossRefGoogle Scholar
  20. Markellos, V.V.: Asymmetric periodic orbits in three dimensions. Mon. Not. R. Astron. Soc. 184, 273–281 (1978).  https://doi.org/10.1093/mnras/184.2.273 ADSCrossRefzbMATHGoogle Scholar
  21. Message, P.J.: The search for asymmetric periodic orbits in the restricted problem of three bodies. Astron. J. 63, 443 (1958).  https://doi.org/10.1086/107804 ADSCrossRefGoogle Scholar
  22. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  23. Szebehely, V.: Theory of Orbits. The Restricted Problem of Three Bodies. Academic Press, Cambridge (1967)zbMATHGoogle Scholar
  24. Taylor, D.B.: Families of asymmetric periodic solutions of the restricted problem of three bodies for the Sun–Jupiter mass ratio and their relationship with the symmetric families. Celest. Mech. 29, 51–74 (1983a)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. Taylor, D.B.: Evolution with the mass parameter of families of asymmetric periodic solutions of the restricted three body problem. Celest. Mech. 29, 75–98 (1983b)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. Voyatzis, G., Kotoulas, T.: Planar periodic orbits in exterior resonances with Neptune. Planet. Space Sci. 53, 1189–1199 (2005)ADSCrossRefzbMATHGoogle Scholar
  27. Voyatzis, G., Kotoulas, T., Hadjidemetriou, J.D.: Symmetric and nonsymmetric periodic orbits in the exterior mean motion resonances with Neptune. Celest. Mech. Dyn. Astron. 91, 191–202 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. Winter, O.C., Murray, C.D.: Resonance and Chaos. II. Exterior resonances and asymmetric libration. Astron. Astrophys. 328, 399–408 (1997)ADSGoogle Scholar
  29. Zagouras, C.G., Perdios, E., Ragos, O.: New kinds of asymmetric periodic orbits in the restricted three-body problem. Astrophys. Space Sci. 240, 273–293 (1996).  https://doi.org/10.1007/BF00639592 ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.NaXys, Department of MathematicsUniversity of NamurNamurBelgium

Personalised recommendations