Advertisement

Exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral harmonics

  • Bharat Mahajan
  • Srinivas R. Vadali
  • Kyle T. Alfriend
Original Article

Abstract

A novel approach for the exact Delaunay normalization of the perturbed Keplerian Hamiltonian with tesseral and sectorial spherical harmonics is presented in this work. It is shown that the exact solution for the Delaunay normalization can be reduced to quadratures by the application of Deprit’s Lie-transform-based perturbation method. Two different series representations of the quadratures, one in powers of the eccentricity and the other in powers of the ratio of the Earth’s angular velocity to the satellite’s mean motion, are derived. The latter series representation produces expressions for the short-period variations that are similar to those obtained from the conventional method of relegation. Alternatively, the quadratures can be evaluated numerically, resulting in more compact expressions for the short-period variations that are valid for an elliptic orbit with an arbitrary value of the eccentricity. Using the proposed methodology for the Delaunay normalization, generalized expressions for the short-period variations of the equinoctial orbital elements, valid for an arbitrary tesseral or sectorial harmonic, are derived. The result is a compact unified artificial satellite theory for the sub-synchronous and super-synchronous orbit regimes, which is nonsingular for the resonant orbits, and is closed-form in the eccentricity as well. The accuracy of the proposed theory is validated by comparison with numerical orbit propagations.

Keywords

Artificial satellite theory Tesseral harmonics Canonical perturbation method Delaunay normalization The method of relegation 

Notes

Acknowledgements

This research was partially supported by AFRL Contract FA9453-13-C-0202 with Dr. Alan T. Lovell serving as the Technical Project Monitor. The authors also acknowledge Dr. Martin Lara for private communications and for providing the code for his implementation of the method of relegation.

References

  1. Aksnes, K.: A second-order artificial satellite theory based on an intermediate orbit. Astron. J. 75(9), 1066 (1970).  https://doi.org/10.1086/111061 ADSMathSciNetCrossRefGoogle Scholar
  2. Aksnes, K.: A note on ‘the main problem of satellite theory for small eccentricities, by A. Deprit and A. Rom, 1970’. Celest. Mech. 4(1), 119–121 (1971).  https://doi.org/10.1007/BF01230328 ADSCrossRefzbMATHGoogle Scholar
  3. Battin, R.H.: An Introduction to the Mathematics and Methods of Astrodynamics. AIAA Education Series, Reston (1987)zbMATHGoogle Scholar
  4. Breiter, S.: Second-order solution for the zonal problem of satellite theory. Celest. Mech. Dyn. Astron. 67(3), 237–249 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. Brouwer, D.: Solution of the problem of artificial satellite theory without drag. Astron. J. 64(1274), 378–396 (1959).  https://doi.org/10.1086/107958 ADSMathSciNetCrossRefGoogle Scholar
  6. Cefola, P.J.: A recursive formulation for the tesseral disturbing function in equinoctial variables. In: AIAA/AAS Astrodynamics Conference, AIAA/AAS Astrodynamics Conference, pp. 76–839 (1976).  https://doi.org/10.2514/6.1976-839
  7. Cefola, P.J., McClain, W.D.: A recursive formulation of the short-periodic perturbations in equinoctial variables. In: AIAA/AAS Astrodynamics Conference, AIAA/AAS Astrodynamics Conference, pp. 78–1383 (1978).  https://doi.org/10.2514/6.1978-1383
  8. Coffey, S.L., Alfriend, K.T.: Short period elimination for the tesseral harmonics. In: Proceedings of Advances in the Astronautical Sciences, AAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, vol. 46, pp. 87–101 (1981)Google Scholar
  9. Coffey, S.L., Alfriend, K.T.: An analytic orbit prediction program generator. J. Guid. Control Dyn. 7(5), 575–581 (1984).  https://doi.org/10.2514/3.19897 ADSCrossRefGoogle Scholar
  10. Coffey, S.L., Deprit, A.: Third-order solution to the main problem in satellite theory. J. Guid. Control Dyn. 5(4), 366–371 (1982).  https://doi.org/10.2514/3.56183 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. Deprit, A.: Canonical transformations depending on a small parameter. Celest. Mech. 1(1), 12–30 (1969).  https://doi.org/10.1007/BF01230629 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. Deprit, A.: Delaunay normalizations. Celest. Mech. 26, 9–21 (1982)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. Deprit, A., Palacián, J., Deprit, E.: The relegation algorithm. Celest. Mech. Dyn. Astron. 79(3), 157–182 (2001).  https://doi.org/10.1023/A:1017504810031 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. Emeljanov, N.V., Kanter, A.A.: A method to compute inclination functions and their derivatives. Manuscr. Geod. 14, 77–83 (1989)ADSGoogle Scholar
  15. Garfinkel, B.: Tesseral harmonic perturbations of an artificial satellite. Astron. J. 70(10), 784–786 (1965)ADSMathSciNetCrossRefGoogle Scholar
  16. Giacaglia, G.E.O.: The equations of motion of an artificial satellite in nonsingular variables. Celest. Mech. 15(2), 191–215 (1977).  https://doi.org/10.1007/BF01228462 ADSCrossRefzbMATHGoogle Scholar
  17. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 8th edn. Elsevier Ltd., Amsterdam (2014)zbMATHGoogle Scholar
  18. Haberman, R.: Applied Partial Differential Equations: With Fourier Series and Boundary Value Problems, 4th edn. Prentice Hall, Englewood Cliffs (2003)Google Scholar
  19. Hori, G.: Theory of general perturbations with unspecified canonical variables. Publ. Astron. Soc. Jpn. 18(4), 287–296 (1966)ADSGoogle Scholar
  20. Kaniecki, J.P.R.: Short period variations in the first-order semianalytical satellite theory. Ph.D. thesis, Massachusetts Institute of Technology (1979)Google Scholar
  21. Kaula, W.M.: Theory of Satellite Geodesy, 1st edn. Dover Publications, Inc., Mineola (1966)zbMATHGoogle Scholar
  22. Lara, M., San-Juan, J.F., Lòpez-Ochoa, L.M.: Averaging tesseral effects: closed form relegation versus expansions of elliptic motion. Math. Probl. Eng. (2013).  https://doi.org/10.1155/2013/570127 MathSciNetGoogle Scholar
  23. Lara, M., San-Juan, J.F., Lopez-Ochoa, L.M., López-Ochoa, L.M.: Efficient semi-analytic integration of GNSS orbits under tesseral effects. Acta Astronaut. 102, 355–366 (2014).  https://doi.org/10.1016/j.actaastro.2013.11.006 ADSCrossRefGoogle Scholar
  24. Mahajan, B., Vadali, S.R., Alfriend, K.T.: Analytic solution for satellite relative motion with zonal gravity perturbations. In: AAS/AIAA Astrodynamics Specialist Conference, Vail, pp. 15–705 (2015)Google Scholar
  25. Mahajan, B., Vadali, S.R., Alfriend, K.T.: Analytic solution for satellite relative motion: the complete zonal gravitational problem. In: 26th AAS/AIAA Space Flight Mechanics Meeting, pp. 16–262. Napa, CA (2016)Google Scholar
  26. McClain, W.D.: A recursively formulated first-order semianalytic artificial satellite theory based on the generalized method of averaging-II. Technical Report CSC/TR-78/6001, Computer Science Corporation (1978)Google Scholar
  27. Palacián, J.: Normal forms for perturbed Keplerian systems. J. Differ. Equ. 180(2), 471–519 (2002).  https://doi.org/10.1006/jdeq.2001.4068 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. Palacián, J.F.: Teoria del satelite artificial: armonicos teserales y su relegacion mediante simplificaciones algebraicas. Ph.D. thesis, Universidad de Zaragoza (1992)Google Scholar
  29. Proulx, R.J., McClain, W.D., Early, L.W., Cefola, P.J.: A theory for the short periodic motion due to the tesseral harmonic gravity field. In: AAAS/AIAA Astrodynamics Specialist Conference, Lake Tahoe, Nevada (1981)Google Scholar
  30. Sansottera, M., Ceccaroni, M.: Rigorous estimates for the relegation algorithm. Celest. Mech. Dyn. Astron. 127(1), 1–18 (2017).  https://doi.org/10.1007/s10569-016-9711-2 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. Segerman, A.M., Coffey, S.L.: An analytical theory for tesseral gravitational harmonics. Celest. Mech. Dyn. 73(1993), 139–156 (2000).  https://doi.org/10.1023/A:1008345403145 ADSCrossRefzbMATHGoogle Scholar
  32. Vagners, J.: Modified long-period behavior due to tesseral harmonics. In: AIAA Guidance, Control and Flight Dynamics Conference, AIAA Guidance, Control and Flight Dynamics Conference, Huntsville, Huntsville, Alabama, pp. 67–563 (1967).  https://doi.org/10.2514/6.1967-563
  33. Wnuk, E.: Tesseral harmonic perturbations for higher order and degree harmonics. Celest. Mech. 44(1–2), 179–191 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. Yan, H., Vadali, S.R., Alfriend, K.T.: A recursive formulation of the satellite perturbed relative motion problem. In: AIAA/AAS Astrodynamics Specialist Conference (August), pp. 1–14 (2014)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations