Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015

Abstract

This report continues the practice where the IAU Working Group on Cartographic Coordinates and Rotational Elements revises recommendations regarding those topics for the planets, satellites, minor planets, and comets approximately every 3 years. The Working Group has now become a “functional working group” of the IAU, and its membership is open to anyone interested in participating. We describe the procedure for submitting questions about the recommendations given here or the application of these recommendations for creating a new or updated coordinate system for a given body. Regarding body orientation, the following bodies have been updated: Mercury, based on MESSENGER results; Mars, along with a refined longitude definition; Phobos; Deimos; (1) Ceres; (52) Europa; (243) Ida; (2867) Šteins; Neptune; (134340) Pluto and its satellite Charon; comets 9P/Tempel 1, 19P/Borrelly, 67P/Churyumov–Gerasimenko, and 103P/Hartley 2, noting that such information is valid only between specific epochs. The special challenges related to mapping 67P/Churyumov–Gerasimenko are also discussed. Approximate expressions for the Earth have been removed in order to avoid confusion, and the low precision series expression for the Moon’s orientation has been removed. The previously online only recommended orientation model for (4) Vesta is repeated with an explanation of how it was updated. Regarding body shape, text has been included to explain the expected uses of such information, and the relevance of the cited uncertainty information. The size of the Sun has been updated, and notation added that the size and the ellipsoidal axes for the Earth and Jupiter have been recommended by an IAU Resolution. The distinction of a reference radius for a body (here, the Moon and Titan) is made between cartographic uses, and for orthoprojection and geophysical uses. The recommended radius for Mercury has been updated based on MESSENGER results. The recommended radius for Titan is returned to its previous value. Size information has been updated for 13 other Saturnian satellites and added for Aegaeon. The sizes of Pluto and Charon have been updated. Size information has been updated for (1) Ceres and given for (16) Psyche and (52) Europa. The size of (25143) Itokawa has been corrected. In addition, the discussion of terminology for the poles (hemispheres) of small bodies has been modified and a discussion on cardinal directions added. Although they continue to be used for planets and their satellites, it is assumed that the planetographic and planetocentric coordinate system definitions do not apply to small bodies. However, planetocentric and planetodetic latitudes and longitudes may be used on such bodies, following the right-hand rule. We repeat our previous recommendations that planning and efforts be made to make controlled cartographic products; newly recommend that common formulations should be used for orientation and size; continue to recommend that a community consensus be developed for the orientation models of Jupiter and Saturn; newly recommend that historical summaries of the coordinate systems for given bodies should be developed, and point out that for planets and satellites planetographic systems have generally been historically preferred over planetocentric systems, and that in cases when planetographic coordinates have been widely used in the past, there is no obvious advantage to switching to the use of planetocentric coordinates. The Working Group also requests community input on the question submitting process, posting of updates to the Working Group website, and on whether recommendations should be made regarding exoplanet coordinate systems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

Change history

  • 02 December 2019

    We point out some errors in the most recent report from the International Astronomical Union (IAU) Working Group on Cartographic Coordinates and Rotational Elements (Archinal et al. 2018).

Notes

  1. 1.

    JD 2451545.0 (2000 January 1 12.0 h).

  2. 2.

    Previous reports also included approximate expressions for the Earth. Their accuracy was poor, and the expressions failed near the fundamental epoch (J2000.0), yet they were sometimes used as a recommended model. Users should refer to the International Earth Rotation and Reference Systems Service (IERS, https://www.iers.org) for appropriate models of the Earth’s rotation.

  3. 3.

    Jacobson (personal communication) et al. have submitted a paper to Planetary and Space Sciences, which includes a series expansion for the Konopliv et al. (2016) model in the convention form, as well as improved orientation models for Phobos and Deimos (see below). The Working Group is not recommending the use of these models at this time, pending review and publication.

  4. 4.

    This definition is consistent with the sense of increasing longitude used for Eros by Miller et al. (2002), and inconsistent with the sense of increasing longitude used for Eros by Thomas et al. (2002).

  5. 5.

    Longitudes measured positively to the west.

  6. 6.

    The sign of the linear term in the expression for W is positive.

  7. 7.

    The sign of the linear term in the expression for W is negative.

  8. 8.

    The other values are used to illustrate the large dichotomy in shape between the northern and southern hemispheres of Mars.

References

  1. Anderson, J.D., Schubert, G.: Saturn’s Gravitational Field, Internal Rotation, and Interior Structure. Science 317, 1384–1387 (2007). https://doi.org/10.1126/science.1144835

    ADS  Article  Google Scholar 

  2. Archinal, B.A., The Lunar Geodesy and Cartography Working Group: Activities of the NASA LPRP Lunar Geodesy and Cartography Working Group, LPI XL, Abstract #2095 (2009)

  3. Archinal, B.A., A’Hearn, M.F., Bowell, E., Conrad, A., Consolmagno, G.J., Courtin, R., Fukushima, T., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G., Oberst, J., Seidelmann, P.K., Stooke, P., Tholen, D.J., Thomas, P.C., Williams, I.P.: Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009. Cel. Mech. Dyn. Ast. 109(2), 101–135 (2011a). https://doi.org/10.1007/s10569-010-9320-4. https://link.springer.com/article/10.1007%2Fs10569-010-9320-4. Accessed 1 Sept 2017

  4. Archinal, B.A., A’Hearn, M.F., Conrad, A., Consolmagno, G.J., Courtin, R., Fukushima, T., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G., Oberst, J., Seidelmann, P.K., Stooke, P., Tholen, D.J., Thomas, P.C., Williams, I.P.: Erratum to: Reports of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2006 and 2009. Cel. Mech. Dyn. Ast. 110(4), 401–403 (2011b). https://doi.org/10.1007/s10569-011-9362-2. https://link.springer.com/article/10.1007%2Fs10569-011-9362-2. Accessed 1 Sept 2017

  5. Archinal, B.A., Becker, T.L., Lee, E.M., Edmundson, K.L.: Initial Global Control Network and Mosaicking of ISS Images of Titan, LPI XLIV, Abstract #2957 (2013a)

  6. Archinal, B.A., Acton, C.H., A’Hearn, M.F., Conrad, A., Consolmagno, G.J., Duxbury, T., Hestroffer, D., Hilton, J.L., Jorda, L., Kirk, R., Klioner, S.A., McCarthy, D., Meech, K., Oberst, J., Ping, J., Seidelmann, P.K., Tholen, D.J., Thomas, P.C., Williams, I.P.: Recommended coordinate system for (4) Vesta, published by the IAU Working Group on Cartographic Coordinates and Rotational Elements (2013b). https://astropedia.astrogeology.usgs.gov/download/Docs/WGCCRE/IAU-WGCCRE-Coordinate-System-for-Vesta.pdf. Accessed 1 Sept 2017

  7. Archinal, B.A., Edmundson, K.L., Kirk, R.L., Gaddis, L.R.: Registering Planetary Datasets for Data Fusion: A “Force Multiplier” for Planetary Science, LPS XLVII, Abstract #2377 (2016)

  8. Aron, J.: Dawn departs Vesta to become first asteroid hopper. New Scientist, 6 Sept 2012. https://www.newscientist.com/blogs/shortsharpscience/2012/09/asteroid-hopping-spacecraft-ma.html. Accessed 1 Sept 2017

  9. Becker, T.L., Bland, M.T., Edmundson, K.L., Soderblom, L.A., Takir, D., Patterson, G.W., Collins, G.C., Pappalardo, R.T., Roatsch, T., Schenk, P.M.: Completed Global Control Network and Basemap of Enceladus, LPS XLVII, Abstract #2342 (2016a)

  10. Becker, K.J., Robinson, M.S., Becker, T.L., Weller, L.A., Edmundson, K.L., Neumann, G.A., Perry, M.E., Solomon, S.C.: First Global Digital Elevation Model of Mercury, LPS XLVII, Abstract #2959 (2016b)

  11. Belton, M.J.S., Meech, K.J., Chesley, S.: 68 co-authors: Stardust-NExT, Deep Impact, and the accelerating spin of 9P/Tempel 1. Icarus 213, 345–368 (2011). https://doi.org/10.1016/j.icarus.2011.01.006

    ADS  Article  Google Scholar 

  12. Belton, M.J.S., Thomas, P., Li, J.-Y., Williams, J., Carcich, B., A’Hearn, M.F., McLaughlin, S., Farnham, T., McFadden, L., Lisse, C.M., Collins, S., Besse, S., Klaasen, K., Sunshine, J., Meech, K.J., Lindler, D.: The complex spin state of 103P/Hartley 2: Kinematics and orientation in space. Icarus 222, 595–609 (2013). https://doi.org/10.1016/j.icarus.2012.06.037

    ADS  Article  Google Scholar 

  13. Besse, S., Lamy, P., Jorda, L., Marchi, S., Barbieri, C.: Identification and physical properties of craters on Asteroid (2867) Steins. Icarus 221, 1119–1129 (2012). https://doi.org/10.1016/j.icarus.2012.08.008

    ADS  Article  Google Scholar 

  14. Burmeister, S., Willner, K., Schmidt, V., Oberst, J.: Determination of Phobos’ Rotational Parameters by an Inertial Frame Bundle Block Adjustment. J. Geodesy (2018, in press)

  15. Carry, B., Dumas, C., Kaasalainen, M., Berthier, J., Merline, W.J., Erard, S., Conrad, A., Drummond, J.D., Hestroffer, D., Fulchignoni, M., Fusco, T.: Physical properties of (2) Pallas. Icarus 205, 460–472 (2010). https://doi.org/10.1016/j.icarus.2009.08.007

    ADS  Article  Google Scholar 

  16. Cassini Project: Planetary Constants (PcK) SPICE kernel. March 30 (2016). http://naif.jpl.nasa.gov/pub/naif/CASSINI/kernels/pck/cpck30Mar2016.tpc. See “BODY606_RADII”. Accessed 1 Sept 2017

  17. Conrad, A.R., Dumas, C., Merline, W.J., Drummond, J.D., Campbell, R.D., Goodrich, R.W., Le Mignant, D., Chaffee, F.H., Fusco, T., Kwok, S.H., Knight, R.I.: Direct measurement of the size, shape, and pole of 511 Davida with Keck AO in a single night. Icarus 191, 616–627 (2007). https://doi.org/10.1016/j.icarus.2007.05.004

    ADS  Article  Google Scholar 

  18. Davies, M.E., Colvin, T.R.: Lunar coordinates in the regions of the Apollo landers. JGR 105(E8), 20277–20280 (2000)

    ADS  Article  Google Scholar 

  19. Davies, M.E., Abalakin, V.K., Cross, C.A., Duncombe, R.L., Masursky, H., Morando, B., Owen, T.C., Seidelmann, P.K., Sinclair, A.T., Wilkins, G.A., Tjuflin, Y.S.: Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites. Celest. Mech. 22, 205–230 (1980)

    ADS  MathSciNet  Article  Google Scholar 

  20. Davies, M.E., Abalakin, V.K., Lieske, J.H., Seidelmann, P.K., Sinclair, A.T., Sinzi, A.M., Smith, B.A., Tjuflin, Y.S.: Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1982. Celest. Mech. 29, 309–321 (1983)

    ADS  Article  Google Scholar 

  21. Davies, M.E., Abalakin, V.K., Bursa, M., Lederle, T., Lieske, J.H., Rapp, R.H., Seidelmann, P.K., Sinclair, A.T., Teifel, V.G., Tjuflin, Y.S.: Report of the IAU/IAG COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1985. Celest. Mech. 39, 103–113 (1986)

    ADS  Article  Google Scholar 

  22. Davies, M.E., Abalakin, V.K., Bursa, M., Hunt, G.E., Lieske, J.H., Morando, B., Rapp, R.H., Seidelmann, P.K., Sinclair, A.T., Tjuflin, Y.S.: Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1988. Celest. Mech. Dyn. Astron. 46, 187–204 (1989)

    ADS  Article  Google Scholar 

  23. Davies, M.E., Abalakin, V.K., Brahic, A., Bursa, M., Chovitz, B.H., Lieske, J.H., Seidelmann, P.K., Sinclair, A.T., Tjuflin, Y.S.: Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1991. Celest. Mech. Dyn. Astron. 53, 377–397 (1992)

    ADS  Article  Google Scholar 

  24. Davies, M.E., Abalakin, V.K., Bursa, M., Lieske, J.H., Morando, B., Seidelmann, P.K., Sinclair, A.T., Yallop, B., Tjuflin, Y.S.: Report of the IAU/IAG/COSPAR Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 1994. Celest. Mech. Dyn. Astron. 63, 127–148 (1996)

    ADS  Article  Google Scholar 

  25. de Vaucouleurs, G., Davies, M.E., Sturms Jr., F.M.: Mariner 9 areographic coordinate system. JGR 78, 4395–4404 (1973)

    ADS  Article  Google Scholar 

  26. Dobrovolskis, A.R.: Chaotic rotation of nereid? Icarus 118, 118–198 (1995)

    Article  Google Scholar 

  27. Drummond, J.D., Merline, W.J., Carry, B., Conrad, A., Reddy, V., Tamblyn, P., Chapman, C.R., Enke, B.L. de Pater, I., de Kleer, K., Christou, J., Dumas, C.: The triaxial ellipsoid size, density, and rotational pole of asteroid (16) psyche from keck and gemini AO observations 2004–2015. Icarus (2018, in press)

  28. Duxbury, T.: Recommended new Models for Mars Spin Axis and Rate, Chairman, Mars Program Office Geodesy and Cartography Working Group, GMU Memo to B. Archinal, Chairman IAU Working Group on Cartographic Coordinates and Rotational Elements, December 3 (2013)

  29. Duxbury, T.: Recommended new Models for Mars, Phobos and Deimos Orientation Expressions, Chairman, Mars Program Office Geodesy and Cartography Working Group, GMU Memo to B. Archinal, Chairman IAU Working Group on Cartographic Coordinates and Rotational Elements, draft received 2017 August 18

  30. Duxbury, T.C., Kirk, R., Archinal, B.A.: Mars geodesy/cartography working group recommendations on mars cartographic constants and coordinate systems. ISPRS WG IV/9: Extraterrestrial Mapping Workshop “Planetary Mapping 2001”, virtual workshop (2001). See https://astrogeology.usgs.gov/groups/ISPRS for on-line abstract. Accessed 1 Sept 2017

  31. Duxbury, T.C., Kirk, R.L., Archinal, B.A., Neumann, G.A.: Mars Geodesy/Cartography Working Group Recommendations on Mars Cartographic Constants and Coordinate Systems, ISPRS, 34, part 4, “Geospatial Theory, Processing and Applications,” Ottawa (2002). http://www.isprs.org/proceedings/XXXIV/part4/pdfpapers/521.pdf

  32. Duxbury, T.C., Christensen, P., Smith, D.E., Neumann, G.A., Kirk, R.L., Caplinger, M.A., Albee, A.A., Seregina, N.V., Neukum, G., Archinal, B.A.: The location of Airy-0, the Mars prime meridian reference, from stereo photogrammetric processing of THEMIS IR imaging and digital elevation data. J. Geophys. Res. Planets 119(12), 2471–2486 (2014). https://doi.org/10.1002/2014JE004678

    ADS  Article  Google Scholar 

  33. Farnham, T.L., Thomas, P.C., Plate Shape Model of Comet 9P/Tempel 1 V2.0, DIF-C-HRIV/ITS/MRI-5-TEMPEL1-SHAPE-MODEL-V2.0. NASA Planetary Data System (2013a)

  34. Farnham, T.L., Thomas, P.C., Plate Shape Model of Comet 103P/Hartley 2 V1.0, DIF-C-HRIV/MRI-5-HARTLEY2-SHAPE-V1.0. NASA Planetary Data System (2013b)

  35. Folkner, W.M., Williams, J.G., Boggs, D.H.: The planetary and lunar ephemeris DE 421. IPN Progress Report 42-178, August 15 (2009). https://ipnpr.jpl.nasa.gov/progress_report/42-178/178C.pdf. Accessed 1 Sept 2017

  36. Folkner, W.M., Williams, J.G., Boggs, D.H.: The planetary and lunar ephemeris DE 421. JPL Memorandum IOM 343R-08-003, 31 March (2008). https://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421.iom.v1.pdf. Accessed 1 Sept 2017

  37. Folkner, W.M., Williams, J.G., Boggs, D.H., Park, R.S., Kuchynka, P.: The planetary and lunar ephemerides DE430 and DE431. IPN Progress Report 42-196, February 15 (2014). https://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf. Accessed 1 Sept 2017

  38. Fujiwara, A., Kawaguchi, J., Yeomans, D.K., Abe, M., Mukai, T., Okada, T., Saito, J., Yano, H., Yoshikawa, M., Scheeres, D.J., Barnouin-Jha, O., Cheng, A.F., Demura, H., Gaskell, R.W., Hirata, N., Ikeda, H., Kominato, T., Miyamoto, H., Nakamura, A.M., Nakamura, R., Sasaki, S., Uesugi, K.: The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330–1334 (2006)

    ADS  Article  Google Scholar 

  39. Giampieri, G., Dougherty, M.K., Smith, E.J., Russell, C.T.: A regular period for Saturn’s magnetic field that may track its internal rotation. Nature 441, 62–64 (2006)

    ADS  Article  Google Scholar 

  40. Gurnett, D.A., Persoon, A.M., Kurth, W.S., Groene, J.B., Averkamp, T.F., Dougherty, M.K., Southwood, D.J.: The Variable Rotation period of the Inner Region of Saturn’s Plasma Disk. Science 316, 442–445 (2007)

    ADS  Article  Google Scholar 

  41. Haberreiter, M., Schmutz, W., Kosovichev, A.G.: Solving the discrepancy between the seismic and photospheric solar radius. ApJ 675, L53–L56 (2008)

    ADS  Article  Google Scholar 

  42. Hall, J.S., Sagan, C., Middlehurst, B., Pettengill, G.H.: Commission 16: Physical Study of Planets and Satellites, Report of Meetings: 20, 24, 25, and 26 August 1970. In: de Jager, C., Jappel, A. (eds.) Proceedings of the Fourteenth General Assembly Brighton 1970, 128–137. D. Reidel Publishing Company, Dordrecht (1971)

  43. International Astronomical Union (IAU): Proceedings of the sixteenth general assembly. Transactions of the IAU, XVI B, D. Reidel Publishing Company, Dordrecht (1977). A copy of the 1976 IAU Resolutions including the “IAU (1976) System of Astronomical Constants” is available on-line as https://www.iau.org/static/resolutions/IAU1976_French.pdf. Accessed 1 Sept 2017

  44. International Astronomical Union (IAU): IAU information bulletin 109, 41 (2012). https://www.iau.org/static/publications/IB109.pdf. Accessed 1 Sept 2017

  45. International Astronomical Union (IAU): Resolution B2 on recommended nominal conversion constants for selected solar and planetary properties (2015a). https://www.iau.org/static/resolutions/IAU2015_English.pdf. Accessed 1 Sept 2017

  46. International Astronomical Union (IAU): Working Group for Planetary System Nomenclature (WGPSN) and International Astronomical Union Committee on Small Body Nomenclature: Dwarf Planets and their Systems (2015b). https://planetarynames.wr.usgs.gov/append7.html#DwarfPlanets. Accessed 1 Sept 2017

  47. IAU Executive Committee: Summary of IAU Executive Committee Meeting in May 2016 (2016). https://www.iau.org/static/archives/announcements/pdf/ann16029a.pdf. Accessed 1 Sept 2017

  48. Jacobson, R.A.: The orbits of the neptunian satellites and the orientation of the pole of neptune. Astron. J. 137, 4322–4329 (2009). https://doi.org/10.1088/0004-6256/137/5/4322

    ADS  Article  Google Scholar 

  49. Jorda, L., Lamy, P.L., Gaskell, R.W., Kaasalainen, G.O., Besse, S., Faury, G.: Asteroid (2867) steins: shape, topography and global physical properties from OSIRIS observations. Icarus 221, 1089–1100 (2012). https://doi.org/10.1016/j.icarus.2012.07.035

    ADS  Article  Google Scholar 

  50. Jorda, L., Gaskell, R., Capanna, C., Hviid, S., Lamy, P., Durech, J., Faury, G., Groussin, O., Gutiérrez, P., Jackman, C., Keihm, S.J., Keller, H.U., Knollenberg, J., Kührt, E., Marchi, S., Mottola, S., Palmer, E., Schloerb, F.P., Sierks, H., Vincent, J.-B., A’Hearn, M.F., Barbieri, C., Rodrigo, R., Koschny, D., Rickman, H., Barucci, M.A., Bertaux, J.L., Bertini, I., Cremonese, G., Da Deppo, V., Davidsson, B., Debei, S., De Cecco, M., Fornasier, S., Fulle, M., Güttler, C., Ip, W.-H., Kramm, J.R., Küppers, M., Lara, L.M., Lazzarin, M., Lopez Moreno, J.J., Marzari, F., Naletto, G., Oklay, N., Thomas, N., Tubiana, C., Wenzel, K.-P.: The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus 277, 257–278 (2016). https://doi.org/10.1016/j.icarus.2016.05.002

    ADS  Article  Google Scholar 

  51. Karkoschka, E.: Neptune’s rotational period suggested by the extraordinary stability of two features. Icarus 215, 439–448 (2011). https://doi.org/10.1016/j.icarus.2011.05.013

    ADS  Article  Google Scholar 

  52. Kirk, R.L., Oberst, J., Giese, B.: DS1 Digital elevation maps of comet 19P/Borrelly V1.0, DS1-C-MICAS-5-BORRELLY-DEM-V1.0. NASA Planetary Data System (2004)

  53. Knutson, H.A., Charbonneau, D., Allen, L.E., Fortney, J.J., Agol, E., Cowan, N.B., Showman, A.P., Cooper, C.S., Thomas, M.S.: A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007). https://doi.org/10.1038/nature05782

    ADS  Article  Google Scholar 

  54. Konopliv, A.S., Asmar, S.W., Carranza, E., Sjogren, W.L., Yuan, D.-N.: Recent gravity models as a result of the Lunar Prospector mission. Icarus 150, 1–18 (2001)

    ADS  Article  Google Scholar 

  55. Konopliv, A.S., Yoder, C.F., Standish, E.M., Yuan, D.-N., Sjogren, W.L.: A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006)

    ADS  Article  Google Scholar 

  56. Konopliv, A.S., Asmar, S.W., Park, R.S., Bills, B.G., Centinello, F., Chamberlin, A.B., Ermakov, A., Gaskell, R.W., Rambaux, N., Raymond, C.A., Russell, C.T., Smith, D.E., Tricarico, P., Zuber, M.T.: The Vesta gravity field, spin pole and rotation period, landmark positions, and ephemeris from the Dawn tracking and optical data. Icarus 240, 103–117 (2014). https://doi.org/10.1016/j.icarus.2013.09.005

    ADS  Article  Google Scholar 

  57. Konopliv, A.S., Park, R.S., Folkner, W.M.: An improved JPL Mars Gravity Field and Orientation from Mars Orbiter and Lander Tracking Data. Icarus 274, 253–260 (2016). https://doi.org/10.1016/j.icarus.2016.02.052

    ADS  Article  Google Scholar 

  58. Kovalevsky, J., Seidelmann, P.K.: Fundamentals of Astrometry. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  59. Kuchynka, P., Folkner, W.M., Konopliv, A.S., Parker, T.J., Park, R.S., Le Maistre, S., Dehant, V.: New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 229, 340–347 (2014). https://doi.org/10.1016/j.icarus.2013.11.015

    ADS  Article  Google Scholar 

  60. Kurth, W.S., Lecacheux, A., Averkamp, T.F., Groene, J.B., Gurnett, D.A.: A Saturnian longitude system based on a variable kilometric radiation period. GRL 24, L02201 (2007). https://doi.org/10.1029/2006GL028336

    ADS  Article  Google Scholar 

  61. Li, J.-Y.: Body-fixed coordinate systems for asteroid (4) Vesta, planetary data system small bodies node, September 18 (2012). Originally at http://sbn.psi.edu/archive/dawn/fc/DWNVFC2_1A/DOCUMENT/VESTA_COORDINATES/VESTA_COORDINATES_120918.PDF, Now at https://web.archive.org/web/20130217143028/http://sbn.psi.edu/archive/dawn/fc/DWNVFC2_1A/DOCUMENT/VESTA_COORDINATES/VESTA_COORDINATES_120918.PDF. Accessed 1 Sept 2017

  62. Li, J.-Y., Mafi, J.N.: Body-fixed coordinate systems for asteroid (4) Vesta, planetary data system small bodies node, October 17 (2013) https://sbn.psi.edu/archive/dawn/fc/DWNVFC2_1A/DOCUMENT/VESTA_COORDINATES/VESTA_COORDINATES_131018.PDF. Accessed 1 Sept 2017

  63. Li, J.-Y., McFadden, L.A., Parker, J.W., Young, E.F., Stern, S.A., Thomas, P.C., Russell, C.T., Sykes, M.V.: Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus 182, 143–160 (2006). https://doi.org/10.1016/j.icarus.2005.12.012

    ADS  Article  Google Scholar 

  64. Li, J.-Y., Thomas, P.C., Carcich, B., Mutchler, M.J., McFadden, L.A., Russell, C.T., Weinstein-Weiss, S.S., Rayman, M.D., Raymond, C.A.: Improved measurement of asteroid (4) Vesta’s rotational axis orientation. Icarus 211, 528–534 (2011). https://doi.org/10.1016/j.icarus.2010.09.019

    ADS  Article  Google Scholar 

  65. LRO Project and LGCWG: A standardized lunar coordinate system for the lunar reconnaissance orbiter and lunar datasets, Version 5, October 1. (2008). https://lunar.gsfc.nasa.gov/library/LunCoordWhitePaper-10-08.pdf. Accessed 1 Sept 2017

  66. Ma, C., Arias, E.F., Eubanks, T.M., Fey, A.L., Gontier, A.-M., Jacobs, C.S., Sovers, O.J., Archinal, B.A., Charlot, P.: The International celestial reference frame as realized by very long baseline interferometry. Astron. J. 116, 516–546 (1998)

    ADS  Article  Google Scholar 

  67. Margot, J.-L.: A Mercury orientation model including non-zero obliquity and librations. Celest. Mech. Dyn. Astr. 105, 329–336 (2009). https://doi.org/10.1007/s10569-009-9234-1

    ADS  Article  MATH  Google Scholar 

  68. Margot, J.-L., Peale, S.J., Solomon, S.C., Hauck, II, Steven, A., Ghigo, F.D., Jurgens, R.F., Yseboodt, M., Giorgini, J.D., Padovan, S., Campbell, D.B.: Mercury’s moment of inertia from spin and gravity data. J. Geophys. Res. 117, E00L09 (2012). https://doi.org/10.1029/2012JE004161

  69. Mazarico, E., Genova, A., Goossens, S., Lemoine, F.G., Neumann, G.A., Zuber, M.T., Smith, D.E., Solomon, S.C.: The gravity field, orientation, and ephemeris of Mercury from MESSENGER observations after three years in orbit. J. Geophys. Res. Planets 119, 2417–2436 (2014)

    ADS  Article  Google Scholar 

  70. Meech, K., Valsecchi, G.B., Archinal, B., Schulz, R., Consolmagno, G.: Supporting editors, authors, and missions with IAU recommendations, Inquires of Heaven, No. 10, 4, August 31 (2012). Originally at http://www.astronomy2012.org/ih. Not Reachable 1 Sept 2017

  71. Merline, W.J., Drummond, J.D., Carry, B., Conrad, A., Tamblyn, P.M., Dumas, C., Kaasalainen, M., Erikson, A., Mottola, S., Durech, R.G., Behrend, R., Casalnuovo, G.B., Chinaglia, B., Christou, J.C., Chapman, C.R., Neyman, C.: The resolved asteroid program—size, shape, and pole of (52) Europa. Icarus 225, 794–805 (2013)

    ADS  Article  Google Scholar 

  72. Miller, J.K., Konopliv, A.S., Antreasian, P.G., Bordi, J.J., Chesley, S., Helfrich, C.E., Owen, W.M., Wang, T.C., Williams, B.G., Yeomans, D.K., Scheeres, D.J.: Determination of shape, gravity, and rotational state of asteroid 433 eros. Icarus 155, 3–17 (2002)

    ADS  Article  Google Scholar 

  73. Mueller, B.E.A., Samarasinha, N.H., Rauer, H., Helbert, J.: Determination of a precise rotation period for the Deep Space 1 target, Comet 19P/Borrelly. Icarus 209, 745–752 (2010)

    ADS  Article  Google Scholar 

  74. NAIF: An overview of reference frames and coordinate systems in the SPICE context, navigation and ancillary information facility, Jet Propulsion Laboratory, California Institute of Technology, Pasadena. November (2014). https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/Tutorials/pdf/individual_docs/17_frames_and_coordinate_systems.pdf. Accessed 1 Sept 2017

  75. NAIF: PCK required reading, navigation and ancillary information facility, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA. January 22 (2013). https://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/req/pck.html. Accessed 1 Sept 2017. https://naif.jpl.nasa.gov/pub/naif/generic_kernels/pck/. Accessed 1 Sept 2017

  76. Nimmo, F., Umurhan, O., Lisse, C.M., Bierson, C.J., Lauer, T.R., Buie, M.W., Throop, H.B., Kammer, J.A., Roberts, J.H., McKinnon, W.B., Zangari, A.M., Moore, J.M., Stern, S., Alan, Y., Leslie, A., Weaver, H.A., Olkin, C.B., Ennico, K.: Mean radius and shape of Pluto and Charon from New Horizons images. Icarus 287, 12–29 (2017). https://doi.org/10.1016/j.icarus.2016.06.027

    ADS  Article  Google Scholar 

  77. Ostro, S.J., Hudson, R.S., Nolan, M.C., Margot, J.-L., Scheeres, D.J., Campbell, D.B., Magri, C., Giosini, J.D., Yeomans, D.K.: Radar Observations of asteroid 216 Kleopatra. Science 288, 836–83 (2000)

    ADS  Article  Google Scholar 

  78. Parker, T.J. Golombek, M.P., Calef, F.J. Hare, T.M.: High-resolution basemaps for localization, mission planning, and geologic mapping at Meridian Planum and Gale crater, LPS XLIII, Abstract #2535 (2012)

  79. PDS: Planetary Data System Standards Reference, Jet Propulsion Laboratory, California Institute of Technology, Pasadena. Version 3.8, February 27 (2009). https://pds.nasa.gov/documents/sr/StdRef_20090227_v3.8.pdf. Accessed 1 Sept 2017

  80. PDS SBN: Coordinate systems at PDS-SBN, April 10 (2014). https://pdssbn.astro.umd.edu/data_sb/resources/coordinate_systems.shtml. Accessed 1 Sept 2017

  81. Perry, M.E., Neumann, G.A., Phillips, R.J., Barnouin, O.S., Ernst, C.M., Kahan, D.S., Solomon, S.C., Zuber, M.T., Smith, D.E., Hauck, II, Steven, A., Peale, S.J., Margot, J.-L., Mazarico, E., Johnson, C.L., Gaskell, R.W., Roberts, J.H., McNutt Jr., R.L.: The low-degree shape of Mercury. Oberst. J. Geophys. Res. Lett. 42, 6951–6958 (2015). https://doi.org/10.1002/2015GL065101

  82. Preusker, F., Scholten, F., Matz, K.-D., Roatsch, T., Willner, K., Hviid, S.F., Knollenberg, J., Jorda, L., Gutiérrez, P.J., Kührt, E., Mottola, S., A’Hearn, M.F., Thomas, N., Sierks, H., Barbieri, C., Lamy, P., Rodrigo, R., Koschny, D., Rickman, H., Keller, H.U., Agarwal, J., Barucci, M.A., Bertaux, J.-L., Bertini, I., Cremonese, G., Da Deppo, V., Davidsson, B., Debei, S., De Cecco, M., Fornasier, S., Fulle, M., Groussin, O., Güttler, C., Ip, W.-H., Kramm, J.R., Küppers, M., Lara, L.M., Lazzarin, M., Lopez Moreno, J.J., Marzari, F., Michalik, H., Naletto, G., Oklay, N., Tubiana, C., Vincent, J.-B.: Shape model, reference system definition, and cartographic mapping standards for comet 67P/Churyumov-Gerasimenko–Stereo-photogrammetric analysis of Rosetta/OSIRIS image data. A&A 583, A33 (2015)

    ADS  Article  Google Scholar 

  83. Preusker, F., Scholten, F., Matz, K.-D., Elgner, S., Jaumann, R., Roatsch, T., Joy, S.P., Polanskey, C.A., Raymond, C.A., Russell, C.T.: Dawn at ceres—shape model and rotational state, LPS XLVII, Abstract #1954 (2016)

  84. Radebaugh, J., Thomson, B.J., Archinal, B., Hagerty, J., Gaddis, L., Lawrence, S.J., Sutton, S., the MAPSIT Steering Committee: Obtaining and Using Planetary Spatial Data into the Future: The Role of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT), Planetary Science Vision 2050 Workshop, Abstract #8084 (2017)

  85. Rayman, M.D., Fraschetti, T.C., Raymond, C.A., Russell, C.T.: Dawn: a mission in development for exploration of main belt asteroids Vesta and Ceres. Acta Astronaut. 58, 605–616 (2006)

    ADS  Article  Google Scholar 

  86. Raymond, C., Roatsch, T.: Ceres coordinate system description, as of October 14 (2015). https://sbn.psi.edu/pds/resource/ceres_coord_sys_151014.pdf. Accessed 1 Sept 2017

  87. Riddle, A.C., Warwick, J.W.: Redefinition of system III longitude. Icarus 27, 457–459 (1976)

    ADS  Article  Google Scholar 

  88. Roncoli, R.: Lunar Constants and Models Document. JPL D-32296 (2005). https://ssd.jpl.nasa.gov/?lunar_doc. Accessed 1 Sept 2017

  89. Russell, C.T., Dougherty, M.K.: Magnetic fields of the outer planets. SSR (2010). https://doi.org/10.1007/s11214-009-9621-7

    Article  Google Scholar 

  90. Samarasinha, N.H., Mueller, B.E.A., Belton, M.J.S., Jorda, L.: Rotation of Cometary Nuclei in Comets II. In: Festou, M., Keller, H.U., Weaver, H.A., (eds.) University of Arizona Press, Tucson (2004)

  91. Schleicher, D.G., Woodney, L.M., Millis, R.L.: Comet 19P/Borrelly at multiple apparitions: seasonal variations in gas production and dust morphology. Icarus 162, 415–442 (2003)

    ADS  Article  Google Scholar 

  92. Scholten, F., Preusker, F., Jorda, L, and Hviid, S.: Reference Frames and Mapping Schemes of Comet 67P/C-G, v2 (24 September 2015), RO-C-MULTI-5-67P-SHAPE-V1.0:CHEOPS_REF_FRAME_V1, NASA Planetary Data System and ESA Planetary Science Archive (2015). https://pdssbn.astro.umd.edu/holdings/ro-c-multi-5-67p-shape-v1.0/document/cheops_ref_frame_v1.pdf. Accessed 26 Nov 2017

  93. Seidelmann, P.K., Abalakin, V.K., Bursa, M., Davies, M.E., de Bergh, C., Lieske, J.H., Oberst, J., Simon, J.L., Standish, E.M., Stooke, P., Thomas, P.C.: Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000. Celest. Mech. Dyn. Astron. 82, 83–110 (2002)

    ADS  Article  Google Scholar 

  94. Seidelmann, P.K., Archinal, B.A., A’Hearn, M.F., Cruiskshank, D.P., Hilton, J.L., Keller, H.U., Oberst, J., Simon, J.L., Stooke, P., Tholen, D.J., Thomas, P.C.: Report on the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements: 2003. Celest. Mech. Dyn. Astron. 91, 203–215 (2005)

    ADS  Article  Google Scholar 

  95. Seidelmann, P.K., Archinal, B.A., A’Hearn, M.F., Conrad, A., Consolmagno, G.J., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G., Oberst, J., Stooke, P., Tedesco, E., Tholen, D.J., Thomas, P.C., Williams, I.P.: Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements: 2006. Celest. Mech. Dyn. Astron. 98, 155–180 (2007)

    ADS  MATH  Article  Google Scholar 

  96. Shepard, M.K., James, R., Patrick, A., Taylor, L.A., Rodriguez-Ford, A.C., Males, J.R., Morzinski, K.M., Close, L.M., Kaasalainen, M., Viikinkoski, M., Timerson, B., Reddy, V., Magri, C., Nolan, M.C., Howell, E.S., Benner, L.A.M., Giorgini, J.D., Warner, B.D., Harris, A.W.: Radar observations and shape model of asteroid 16 Psyche. Icarus 281, 388–403 (2017)

    ADS  Article  Google Scholar 

  97. Smith, D., Neumann, B., Arvidson, R.E. Guinness, E.A., Slavney, S.: Mars global surveyor laser altimeter mission experiment gridded data record. NASA Planetary Data System, MGS-M-MOLA-5-MEGDR-L3-V1.0, (2003). https://pds.nasa.gov/ds-view/pds/viewProfile.jsp?dsid=MGS-M-MOLA-5-MEGDR-L3-V1.0. Accessed 1 Sept 2017

  98. Soderblom, L.A., Boice, D.C., Britt, D.T., Brown, R.H., Buratti, B.J., Kirk, R.L., Lee, M., Nelson, R.M., Oberst, J., Sandel, B.R., Stern, S.A., Thomas, N., Yelle, R.V.: Imaging borrelly. Icarus 167, 4–15 (2004)

    ADS  Article  Google Scholar 

  99. Stark, A.: The prime meridian of the planet Mercury. MESSENGER PDS Release (2016). https://naif.jpl.nasa.gov/pub/naif/pds/data/mess-e_v_h-spice-6-v1.0/messsp_1000/document/stark_prime_meridian.pdf. Accessed 1 Sept 2017

  100. Stark, A., Oberst, J., Preusker, F., Peale, S.J., Margot, J.-L., Phillips, R.J., Neumann, G.A., Smith, D.E., Zuber, M.T., Solomon, S.C.: First MESSENGER orbital observations of Mercury’s librations. Geophys. Res. Lett. 42, 7881–7889 (2015)

    ADS  Article  Google Scholar 

  101. Stark, A., Willner, K., Burmeister, S., Oberst, J.: Geodetic framework for martian satellite exploration I: reference rotation models. European Planetary Science Conference, V. 11, EPSC2017-868-1 (2017a). http://meetingorganizer.copernicus.org/EPSC2017/EPSC2017-868-1.pdf. Accessed 17 July 2017

  102. Stark, A., Oberst, J., Preusker, F., Burmeister, S., Steinbrügge, G., Hussmann, H.: The geodetic reference frames of Mercury after MESSENGER. J. Geodesy (2017b, submitted). Preprint available at http://arxiv.org/abs/1710.09686

  103. Stevenson, D.J.: A new spin on Saturn. Nature 441, 344–35 (2006)

    Article  Google Scholar 

  104. Thomas, P., Veverka, J.: Neptune’s small inner satellites. JGR 96(Supplement), 19261–19268 (1991)

    Google Scholar 

  105. Thomas, P.C., Binzel, R.P., Gaffey, M.J., Zellner, B.H., Storrs, A.D., Wells, E.: Vesta: spin pole, size, and shape from HST images. Icarus 128, 88–94 (1997). https://doi.org/10.1006/icar.1997.5736

    ADS  Article  Google Scholar 

  106. Thomas, P.C., Joseph, J., Carcich, B., Veverka, J., Clark, B.E., Bell, J.F., Byrd, A.W., Chomko, R., Robinson, M., Murchie, S., Prockter, L., Cheng, A., Izenberg, N., Malin, M., Chapman, C., McFadden, L.A., Kirk, R., Gaffey, M., Lucey, P.G.: Eros: shape, topography, and slope processes. Icarus 155, 18–37 (2002)

    ADS  Article  Google Scholar 

  107. Thomas, P.C., Parker, J.W., McFadden, L.A., Russell, C.T., Stern, S.A., Sykes, M.V., Young, E.F.: Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226 (2005)

    ADS  Article  Google Scholar 

  108. Thomas, P.C., Veverka, J., Belton, M.J.S., Hidy, A., A’Hearn, M.F., Farnham, T.L., Groussin, O., Li, J.-Y., McFadden, L.A., Sunshine, J., Wellnitz, D., Lisse, C., Schultz, P., Meech, K.J., Delamere, W.A.: The shape, topography, and geology of Tempel 1 from Deep Impact observations. Icarus 187, 4–15 (2007)

    ADS  Article  Google Scholar 

  109. Thomas, P.C., A’Hearn, M.F., Veverka, J., Belton, M.J.S., Kissel, J., Klaasen, K.P., McFadden, L.A., Melosh, H.J., Schultz, P.H., Besse, S., Carcich, B.T., Farnham, T.L., Groussin, O., Hermalyn, B., Li, J.-Y., Lindler, D.J., Lisse, C.M., Meech, K., Richardson, J.E.: Shape, density, and geology of the nucleus of comet 103P/Hartley 2. Icarus 222, 550–558 (2013a)

    ADS  Article  Google Scholar 

  110. Thomas, P.C., Burns, J.A., Hedman, M., Helfenstein, P., Morrison, S., Tiscareno, M.S., Veverka, J.: The inner small satellites of Saturn: A variety of worlds. Icarus 226, 999–1019 (2013b)

    ADS  Article  Google Scholar 

  111. Thomas, P.C., Tajeddine, R., Tiscareno, M.S., Burns, J.A., Joseph, J., Loredo, T.J., Helfenstein, P., Porco, C.: Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37 (2016). https://doi.org/10.1016/j.icarus.2015.08.037

    ADS  Article  Google Scholar 

  112. Urban, S.E., Seidelmann, P.K. (eds.): Explanatory Supplement to the Astronomical Almanac, 3rd edn. University Science Books, Mill Valley (2012)

    Google Scholar 

  113. Verma, A.K., Margot, J.L.: Mercury’s gravity, tides, and spin from MESSENGER radio science data. J. Geophys. Res. Planets 121, 1627–1640 (2016)

    ADS  Article  Google Scholar 

  114. Veverka, J., Klaasen, K., A’Hearn, M., Belton, M., Brownlee, D., Chesley, S., Clark, B., Economou, T., Farquhar, R., Green, S.F., Groussin, O., Harris, A., Kissel, J., Li, J.-Y., Meech, K., Melosh, J., Richardson, J., Schultz, P., Silen, J., Sunshine, J., Thomas, P., Bhaskaran, S., Bodewits, D., Carcich, B., Cheuvront, A., Farnham, T., Sackett, S., Wellnitz, D., Wolf, A.: Return to comet Tempel 1: overview of stardust-NExT results. Icarus 222, 424–435 (2013). https://doi.org/10.1016/j.icarus.2012.03.034

    ADS  Article  Google Scholar 

  115. Williams, J.G., Boggs, D.H., Folkner, W.M.: DE421 lunar orbit, physical librations, and surface coordinates. JPL Interoffice Memorandum IOM 335-JW,DB,WF-20080314-001, 14 March (2008). https://ssd.jpl.nasa.gov/pub/eph/planets/ioms/de421_moon_coord_iom.pdf. Accessed 1 Sept 2017

  116. Zangari, A.: A meta-analysis of coordinate systems and bibliography of their use on Pluto from Charon’s discovery to the present day. Icarus 246, 93–145 (2015). https://doi.org/10.1016/j.icarus.2014.10.040

    ADS  Article  Google Scholar 

  117. Zebker, H.A., Stiles, B., Hensley, S., Lorenz, R., Kirk, R.L., Lunine, J.: Size and shape of Saturn’s moon titan. Science 324, 921–923 (2009)

    ADS  Article  Google Scholar 

  118. Zubarev, A., Nadezhdina, I., Oberst, J., Hussmann, H., Stark, A.: New Ganymede control point network and global shape model. PSS 117, 246 (2015). https://doi.org/10.1016/j.pss.2015.06.022

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate useful input from Nat Bachman, Jack Drummond, Tony Farnham, William Folkner, Rose Hayward, Kenneth Herkenhoff, Robert Jacobson, Laurent Jorda, Alex Konopliv, Janet Richie, Boris Semenov, Michael Shepard, and Alexander Stark. Archinal received support under a NASA-U. S. Geological Survey Interagency agreement. In memory of Michael A’Hearn, who passed away on May 29, 2017, Mike made significant contributions to not only this report, but provided outstanding service to our Working Group and the International Astronomical Union for many years.

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. A. Archinal.

Additional information

M. F. A’Hearn deceased on 2017 May 29.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Archinal, B.A., Acton, C.H., A’Hearn, M.F. et al. Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015. Celest Mech Dyn Astr 130, 22 (2018). https://doi.org/10.1007/s10569-017-9805-5

Download citation

Keywords

  • Cardinal directions
  • Cartographic coordinates
  • Coordinate systems
  • Coordinate frames
  • Longitude
  • Latitude
  • Planetographic
  • Planetocentric
  • Rotation axes
  • Rotation periods
  • Sizes
  • Shapes
  • Planets
  • Satellites
  • Dwarf planets
  • Minor planets
  • Asteroids
  • Comets